K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2022

ĐKXĐ : \(x\ge-1\)

\(x^2+x+12\sqrt{x+1}=36\)

\(\Leftrightarrow\left(x^2+2x+1\right)-\left(x+1-12\sqrt{x+1}+36\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)

\(\Leftrightarrow\left(x+\sqrt{x+1}-5\right)\left(x-\sqrt{x+1}+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=5-x\\\sqrt{x+1}=x+7\end{matrix}\right.\)

Với \(\sqrt{x+1}=5-x\)

<=> \(\left\{{}\begin{matrix}x+1=x^2-10x+25\\-1\le x\le5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-11x+24=0\\-1\le x\le5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)\left(x-8\right)=0\\-1\le x\le5\end{matrix}\right.\Leftrightarrow x=3\)

Với \(\sqrt{x+1}=x+7\Leftrightarrow\left\{{}\begin{matrix}x+1=x^2+14x+49\\x\ge-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+13x+48=0\\x\ge-1\end{matrix}\right.\)

\(\Leftrightarrow∄x\)

Vậy  tập nghiệm S = {3}

13 tháng 5 2022

\(a,\) ta có : 

\(\Leftrightarrow\left\{{}\begin{matrix}A=\sqrt{3}+\sqrt{2^2.3}-\sqrt{3^2.3}-\sqrt{6^2}\\A=\sqrt{3}+2\sqrt{3}-3\sqrt{3}-6\\A=\sqrt{3}.\left(1+2-3\right)-6\\A=-6\end{matrix}\right.\)

\(\Rightarrow A=-6\) . vậy \(A=9\sqrt{5}\)

__________________________________________________________

\(b,\) với \(x>0\) và \(x\ne1\) . ta có :

\(B=\dfrac{2}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}+\dfrac{3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\left(\sqrt{x}-1\right)+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{2\sqrt{x}-\sqrt{x}+1+3\sqrt{x}-5}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow\) \(B=\dfrac{4\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(\Leftrightarrow B=\dfrac{4}{\sqrt{x}}\)

vậy với \(x>0\) \(;\) \(x\ne1\) thì \(B=\dfrac{4}{\sqrt{x}}\)

để \(B=2\) thì \(\dfrac{4}{\sqrt{x}}=2\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)

vậy để \(B=2\) thì \(x=4\)

13 tháng 5 2022

c.ơn bn

5 tháng 10 2020

\(ĐK:x\ge-1\)

\(x^2+x+12\sqrt{x+1}=36\Leftrightarrow\left(x^2+x-12\right)+\left(12\sqrt{x+1}-24\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)+12\left(\sqrt{x+1}-2\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x-3\right)+12.\frac{x-3}{\sqrt{x+1}+2}=0\Leftrightarrow\left(x-3\right)\left(x+4+\frac{12}{\sqrt{x+1}+2}\right)=0\)

Dễ thấy \(x+4+\frac{12}{\sqrt{x+1}+2}>0\forall x\ge-1\)nên x - 3 = 0 hay x = 3 (tm)

Vậy nghiệm duy nhất của phương trình là 3

NV
6 tháng 8 2021

1.

ĐKXĐ: \(x< 5\)

\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)

\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)

\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)

\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

NV
6 tháng 8 2021

b.

ĐKXĐ: \(x\ge2\)

\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=2\)

15 tháng 12 2018

\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)

\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)

\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)

\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)

5 tháng 10 2020

ĐKXĐ: \(x\le1\).

\(PT\Leftrightarrow x^2-2x+1=1-x-12\sqrt{1-x}+36\)

\(\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{1-x}-6\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=\sqrt{1-x}\left(1\right)\\7-x=\sqrt{1-x}\left(2\right)\end{matrix}\right.\).

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-5\\\left(x+5\right)^2=1-x\end{matrix}\right.\Leftrightarrow x=-3\).

\(\left(2\right)\Leftrightarrow\left(7-x\right)^2=1-x\Leftrightarrow x^2-13x+48=0\) (vô nghiệm).

Vậy...

9 tháng 11 2019

nghiệm có nguyên k bn???

a) Ta có: \(C=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{6\sqrt{x}-8}{x-3\sqrt{x}+2}\)

\(=\dfrac{x-4\sqrt{x}+4-\left(x+\sqrt{x}-2\right)+6\sqrt{x}-8}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+2\sqrt{x}-4-x-\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}=\dfrac{1}{\sqrt{x}-1}\)

b) Thay x=36 vào C, ta được:

\(C=\dfrac{1}{6-1}=\dfrac{1}{5}\)

6 tháng 3 2022

Câu 1 : 

a, \(=8+4-2.6=12-12=0\)

b, đk : x > 0 ; x khác 1 

\(P=\left(\dfrac{\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right).\dfrac{x+\sqrt{x}}{1-\sqrt{x}}=\dfrac{1-\sqrt{x}}{1-\sqrt{x}}=1\)

25 tháng 7 2017

a)\(x^2+x+12\sqrt{x+1}=36\)

\(pt\Leftrightarrow x^2+x-12+12\sqrt{x+1}-24=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x+1\right)-576}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x-3\right)}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\frac{144}{12\sqrt{x+1}+24}\right)=0\)

Dễ thấy: \(x+4+\frac{144}{12\sqrt{x+1}+24}>0\forall x\ge-1\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

b)\(x+\sqrt{x-2}=2\sqrt{x-1}\)

\(pt\Leftrightarrow x-2+\sqrt{x-2}=2\sqrt{x-1}-2\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}=2\left(\sqrt{x-1}-1\right)\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-1-1}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-2}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(1+\frac{1}{\sqrt{x-2}}-\frac{2}{\sqrt{x-1}+1}\right)=0\)

Suy ra x-2=0=>x=2

c)Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(VT=\sqrt{x+3}+\sqrt{1-x}\)

\(\ge\sqrt{x+3+1-x}=\sqrt{4}=2=VP\)

Xảy ra khi \(\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)

9 tháng 7 2018

1) ĐK: \(x\ge-1\)

\(PT\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12.\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\Leftrightarrow x=3\text{ hoặc }\frac{12}{\sqrt{x+1}+2}+x+4=0\) (*)

VT của (*) luôn dương với \(x\ge-1\)

=> x = 3