x/2=y/5 và x.y=90
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\dfrac{x}{3}=\dfrac{y}{4}=k\)\(\Rightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
\(\Rightarrow xy=12k^2=192\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}x=\pm12\\y=\pm16\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=12\\y=16\end{matrix}\right.\\\left\{{}\begin{matrix}x=-12\\y=-16\end{matrix}\right.\end{matrix}\right.\)
2) Áp dụng t/c dtsbn:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{-90}{9}=-10\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-10\right).2=-20\\y=\left(-10\right).3=-30\\z=\left(-10\right).5=-50\end{matrix}\right.\)
3) Áp dụng t/c dtsbn:
\(\dfrac{x}{3}=\dfrac{y}{8}=\dfrac{z}{5}=\dfrac{3x}{9}=\dfrac{2z}{10}=\dfrac{3x+y-2z}{9+8-10}=\dfrac{14}{7}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=2.8=16\\z=2.5=10\end{matrix}\right.\)
a) x : 11 = y : 7
=> x/7 = y/11 và x + y = -54 Thay vào ta có :
x/7 = y/11 = (x+y)/(7+11) = -54/18= -3
=> x = -3.7 = -27
=> y = -3.11 = -33
\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=\frac{2}{5}y\)
\(x.y=90\Rightarrow\frac{2}{5}.y.y=90\Rightarrow y^2=225\Rightarrow y=15\)
\(\Rightarrow x=90:15=6\)
Nói tóm lại là:
@Nguyễn Ngọc Sáng làm sai
@Tuấn Anh Phan Nguyễn trình bày vậy k đc
Ta có: \(\frac{x}{2}=\frac{y}{5}\) và x . y = 90
Đặt \(\frac{x}{2}=\frac{y}{5}=k\) => x = 2k , y = 5k
Từ x . y = 90 => 2k . 5k = 90 => 10k2 = 90 => k2 = 9 => k = \(\pm3\)
* Với k = 3 thì a = 6 ; y = 15
* Với k = - 3 thì a = - 6 ; y = - 15
Vậy a = 6 ; y = 15 hoặc a = - 6 ; y = - 15
x/2=y/5 =>x=2/5y
x.y=90 =>y.2/5y=90=>y2=225=>y=15
=>x=90:15
=>x=6
Vậy x=6,y=15
Ta có : \(\frac{x}{2}=\frac{y}{5}\Leftrightarrow2y=5x\Rightarrow y=\frac{2y}{5}\)
Thay \(y=\frac{2y}{5}\)vào biểu thức \(xy=90\); ta được :
\(\frac{2y}{5}\cdot y=90\Leftrightarrow2y^2=90.5\Leftrightarrow2y^2=450\Leftrightarrow y^2=225\Leftrightarrow y=15\)
Vì \(y=15\Rightarrow x=\frac{2.15}{5}=6\)
Vậy \(x;y=\left[6;15\right]\)
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-11;1\right)\right\}\)
a: \(\left(x,y\right)\in\left\{\left(-9;1\right);\left(-1;9\right);\left(-3;3\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(1;7\right);\left(-7;-1\right)\right\}\)
c: \(\left(x,y\right)\in\left\{\left(11;-1\right);\left(-1;11\right)\right\}\)
a, \(\frac{2}{3}x=\frac{3}{4}y=\frac{4}{5}z\)
\(\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\)
\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{45}{49}\)
Đến đây tự làm tiếp nhé
b, \(2x=3y=5z\Rightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
=> x = 75, y = 50, z = 30
c, \(\frac{3}{4}x=\frac{5}{7}y=\frac{10}{11}z\)
\(\Rightarrow\frac{3x}{4.30}=\frac{5y}{7.30}=\frac{10z}{11.30}\)
\(\Rightarrow\frac{x}{40}=\frac{y}{42}=\frac{z}{33}\)
\(\Rightarrow\frac{2x}{80}=\frac{3y}{126}=\frac{4z}{132}=\frac{2x-3y+4z}{80-126+132}=\frac{8,6}{86}=\frac{1}{10}\)
=> x=... , y=... , z=...
d, Đặt \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow x=2k,y=5k\)
Ta có: xy = 90 => 2k.5k = 90 => 10k2 = 90 => k2 = 9 => k = 3 hoặc -3
Với k = 3 => x = 6, y = 15
Với k = -3 => x = -6, y = -15
Vậy...
e, Tương tự câu d
b) Ta có :\(\text{ 2x = 3y = 5z }=\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=\frac{1}{6}\)
=> \(2x=\frac{1}{6}\Rightarrow x=\frac{1}{12}\)
\(3y=\frac{1}{6}\Rightarrow y=\frac{1}{18}\)
\(5z=\frac{1}{6}\Rightarrow z=\frac{1}{30}\)
a: \(\left(x,y\right)\in\left\{\left(1;-2\right);\left(-1;2\right);\left(-2;1\right);\left(2;-1\right)\right\}\)
b: \(\left(x,y\right)\in\left\{\left(-3;1\right);\left(-1;3\right)\right\}\)
d: \(\left(x,y\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
x = 6
y = 15
Kiểm tra đi bạn
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{xy}{2.5}=\frac{90}{10}=9\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=9\Rightarrow x=18\\\frac{y}{5}=9\Rightarrow y=45\end{cases}}\)
Vậy ...