K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2022

`(2x+3)^2 - 2=23`

`(2x+3)^2 = 23+2`

`(2x+3)^2=25`

`(2x+1)^2=(5)^2`

`@TH1:`

`2x+1=5`

`2x=5-1`

`2x=4`

`x=4:2`

`x=2`

`@TH2:`

`2x+3=-5`

`2x=-5-3`

`2x=-8`

`x=-8;2`

`x=-4`

Vậy `x={-4;2}`

17 tháng 8 2023

Chịu

AH
Akai Haruma
Giáo viên
25 tháng 5 2022

Số khá xấu. Bạn coi lại đề xem có viết nhầm biểu thức không?

7 tháng 1 2016

bạn giúp mình giải 3 câu này nhé

 

25 tháng 3 2020

Ta có : \(\left(2x+3\right)^2-2=23\)

=> \(\left(2x+3\right)^2=23+2=25\)

=> \(\left[{}\begin{matrix}2x+3=\sqrt{25}\\2x+3=-\sqrt{25}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{\sqrt{25}-3}{2}=1\\x=\frac{-\sqrt{25}-3}{2}=-4\end{matrix}\right.\)

Vậy phương trình trên có tập nghiệm là \(S=\left\{1;-4\right\}\)

28 tháng 10 2023

a: \(5^{\left(x-2\right)\left(x+3\right)}=1\)

=>\(\left(x-2\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

c: \(\left|x^2+2x\right|+\left|y^2-9\right|=0\)

mà \(\left\{{}\begin{matrix}\left|x^2+2x\right|>=0\forall x\\\left|y^2-9\right|>=0\forall y\end{matrix}\right.\)

nên \(\left\{{}\begin{matrix}x^2+2x=0\\y^2-9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(x+2\right)=0\\\left(y-3\right)\left(y+3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x\in\left\{0;-2\right\}\\y\in\left\{3;-3\right\}\end{matrix}\right.\)

d: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=120\)

=>\(2^x\left(1+2+2^2+2^3\right)=120\)

=>\(2^x\cdot15=120\)

=>\(2^x=8\)

=>x=3

e: \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

=>\(\left(x-7\right)^{x+11}-\left(x-7\right)^{x+1}=0\)

=>\(\left(x-7\right)^{x+1}\left[\left(x-7\right)^{10}-1\right]=0\)

=>\(\left[{}\begin{matrix}x-7=0\\x-7=1\\x-7=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\\x=6\end{matrix}\right.\)

31 tháng 3 2019

a) (2x – 1)(4x2 + 2x + 1) – 4x(2x2 – 3) = 23

⇔ 8x3 – 1 – 8x3 + 12x = 23

⇔ 12x = 24 ⇔ x = 2.

Tập nghiệm của phương trình: S = {2}

b) ĐKXĐ : x + 1 ≠ 0 và x – 2 ≠ 0 (vì vậy x2 – x – 2 = (x + 1)(x – 2) ≠ 0)

⇔ x ≠ -1 và x ≠ 2

Quy đồng mẫu thức hai vế :

Khử mẫu, ta được : x2 – 4 – x – 1 = x2 – x – 2 – 3 ⇔ 0x = 0

Phương trình này luôn nghiệm đúng với mọi x ≠ -1 và x ≠ 2.