K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 8 2022

Mỗi bài bạn chỉ nên đăng 1 lần thôi. Tránh đăng lặp lại nhiều gây loãng box toán.

10 tháng 4 2019

f(x) = 2sinx + sin2x trên đoạn [0; 3 π /2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3 3 /2

28 tháng 11 2017

Giải bài 8 trang 147 sgk Giải tích 12 | Để học tốt Toán 12

26 tháng 2 2017

Đáp án D

Chú ý: Có thể sử dụng chức năng TABLE của

 MTCT để nhìn giá trị lớn nhất, giá trị nhỏ nhất

 giúp bài toán làm nhanh hơn.

26 tháng 4 2017

19 tháng 5 2019

Đáp án: B

Ta có:

A =  sin 2 x  + 2cos⁡x + 1 = 1 -  cos 2 x  + 2cos⁡x + 1 = - cos 2 x  + 2cos⁡x + 2

A = -( cos 2 x  - 2cos⁡x + 1) + 3 = -(cosx - 1 ) 2  + 3

Mà -(cosx - 1 ) 2  ≤ 0 ⇒ -(cosx - 1 ) 2  + 3 ≤ 3

Vậy giá trị lớn nhất của A bằng 3

NV
24 tháng 9 2019

\(y=2sinx+sin2x\Rightarrow y'=2cosx+2cos2x=4cos^2x+2cosx-2\)

\(y'=0\Rightarrow\left[{}\begin{matrix}cosx=-1\\cosx=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\pi+k2\pi\\x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)

\(y\left(\pi\right)=0\) ; \(y\left(\frac{\pi}{3}\right)=\frac{3\sqrt{3}}{2}\); \(y\left(-\frac{\pi}{3}\right)=-\frac{3\sqrt{3}}{2}\)

\(\Rightarrow y_{max}=\frac{3\sqrt{3}}{2}\) khi \(x=\frac{\pi}{3}+k2\pi\)

NV
26 tháng 9 2019

Giải kiểu lớp dưới cũng được, hơi mất thời gian 1 chút thôi:

\(P=2sinx+2sinx.cosx=2sinx\left(cosx+1\right)\)

Áp dụng BĐT \(4ab\le\left(a+b\right)^2\) ta có:

\(P=\frac{1}{2\sqrt{3}}.4.\sqrt{3}sinx\left(cosx+1\right)\le\frac{1}{2\sqrt{3}}\left(\sqrt{3}sinx+cosx+1\right)^2\)

\(\Rightarrow P\le\frac{2}{\sqrt{3}}\left(\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx+\frac{1}{2}\right)^2\)

\(\Rightarrow P\le\frac{2}{\sqrt{3}}\left[sin\left(x+\frac{\pi}{6}\right)+\frac{1}{2}\right]^2\le\frac{2}{\sqrt{3}}\left(1+\frac{1}{2}\right)^2=\frac{3\sqrt{3}}{2}\)

\(\Rightarrow P_{max}=\frac{3\sqrt{3}}{2}\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{6}\right)=1\\\sqrt{3}sinx=cosx+1\end{matrix}\right.\) \(\Rightarrow x=\frac{\pi}{3}+k2\pi\)

Mà tưởng lớp 11 học đạo hàm rồi chứ

16 tháng 3 2018

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2

15 tháng 8 2021

a, \(y=sin^2x-2sinx+3cos^2x\)

\(=sin^2x-2sinx+3\left(1-sin^2x\right)\)

\(=3-2sinx-2sin^2x\)

Đặt \(sinx=t\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y=f\left(t\right)=3-2t-2t^2\)

\(\Rightarrow y_{min}=min\left\{f\left(0\right);f\left(1\right)\right\}=-1\)

\(y_{max}=max\left\{f\left(0\right);f\left(1\right)\right\}=3\)

15 tháng 8 2021

b, \(y=sinx-cosx+sin2x+5\)

\(=sinx-cosx-\left(sinx-cosx\right)^2+6\)

Đặt \(sinx-cosx=t\left(t\in\left[-\sqrt{2};\sqrt{2}\right]\right)\)

\(\Rightarrow y=f\left(t\right)=-t^2+t+6\)

\(\Rightarrow y_{min}=min\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=4-\sqrt{2}\)

\(y_{max}=max\left\{f\left(-\sqrt{2}\right);f\left(0\right)\right\}=6\)

27 tháng 1 2017