K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A=12.34.56...99100A=12.34.56...99100

A<23.45.67...100101⇒A<23.45.67...100101

A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100

A2<1101<1100=1102⇒A2<1101<1100=1102

A<

A=12.34.56...99100A=12.34.56...99100

A<23.45.67...100101⇒A<23.45.67...100101

A2<23.45.67...100101.12.34.56...99100⇒A2<23.45.67...100101.12.34.56...99100

A2<1101<1100=1102⇒A2<1101<1100=1102

A<

6 tháng 1 2023

ta có :

`1^3` \(⋮\) `1`

\(2^3⋮2\)

\(3^3⋮3\)

.................

\(100^3⋮100\)

`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)

vậy `A` \(⋮\)`B`

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

13 tháng 12 2015

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(4A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(3A=4A-A=1-\frac{1}{2^{100}}<1\)

\(A<\frac{1}{3}\)

29 tháng 8 2015

Thu Thảo Vũ tick đúng cho mình nhé Thu Thảo Vũ

1 tháng 11 2016

\(A=\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\)

\(2^2.A=1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\)

\(2^2.A-A=\left(1+\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+...+\frac{1}{2^{98}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+\frac{1}{2^6}+\frac{1}{2^8}+...+\frac{1}{2^{100}}\right)\)

\(4.A-A=1-\frac{1}{2^{100}}< 1\)

\(3A< 1\)

\(\Rightarrow A< \frac{1}{3}\left(đpcm\right)\)