cho tam giác ABC vuông tại A đường cao AH. Đường tròn tâm E đường kính BH cắt AB tại M( M khác B), đường trong tâm F đường kính HC cắt AC tại N(N khác C)
a)Chứng minh AM.AB=AN.AC và AN.AC=MN2
b)Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Chứng minh IO vuông góc với đường thẳng MN
c)Chứng minh 4(EN2+FM2)=BC2+6AH2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (AH/2) có
ΔAMH nội tiếp
AH là đường kính
Do đó: ΔAMH vuông tại M
Xét (HA/2)có
ΔAHN nội tiếp
AH là đường kính
Do đó;ΔAHN vuông tại N
Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
b: AM*AB=AH^2
AN*AC=AH^2
Do dó: AM*AB=AN*AC
c: góc NME
=góc NMH+góc EMH
=góc HAC+góc HCA=90 độ
=>NM là tiếp tuyến của (E)
a: Xét (O) có
ΔAHM nội tiếp
AH là đường kính
=>ΔAMH vuông tại M
Xét (O) có
ΔANH nội tiếp
AH là đường kính
=>ΔANH vuông tại N
ΔHAB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔHCA vuông tại H có HN là đường cao
nên AN*AC=AH^2
b: Xét tứ giác AMHN có
góc AMH=góc ANH=góc MAN=90 độ
=>AMHN là hình chữ nhật
=>góc ANM=góc AHM=góc ABC
=>góc MBC+góc MNC=180 độ
=>NMBC là tứ giác nội tiếp
Tam giác MBH nội tiếp đường tròn tâm I đường kính BH
=> Tam giác MHB vuông tại M => MH vg AB => AMH = 90 độ
Tam giác HNC nội tiếp đường tròn tâm O đk HC => Tam giác NHC vuông tại N
=> ANH = 90 độ
TG NAMH có ANH = HMA = MAN = 90 độ
=> NAMH là HCN . Gọi MN giao AH tại O => OM = OH ; ON = OH ( tính chất HCN)
Tam giác BMH vuông tại M có MI là trung tuyến => MI = IH = 1/2 BH => Tam giác IMH cân tại I
=> IMH = IHM (1)
Tam giác OMH có OM = OH => tam giác OMH cân tại O => OMH = OHM (2)
Từ (1) và (2) => IMH + OMH = IHM + OHM => OMI = IHO = 90 độ
=> MN vg IM
=> MN là tiếp tuyến đường tròn tâm I (*)
CM tương tự MN vg NK => MN là tiếp tuyến đường tròn tâm K (**)
Từ (*) và(**) => MN là tiếp tuyến chung của đường tròn tâm I và K