K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2018

Viết Đề bài thứ nhất 

= 9999931996.9999933-5555571996-555557

=9999934.499.9999933-5555574.499.555557

=....1*...7-...1*555557

=....7-...7

=....0 chia hết cho 5

17 tháng 8 2020

Ta đi chứng minh \(A⋮2,A⋮5\)

+) Ta có : \(A=99999^{1999}-555557^{1997}\equiv1-1\equiv0\left(mod2\right)\)

\(\Rightarrow A⋮2\)

Lại có : \(99999\equiv\left(-1\right)\left(mod5\right)\)

\(\Rightarrow99999^{1999}\equiv\left(-1\right)\left(mod5\right)\)

Vì \(555557\equiv2\left(mod5\right)\)

\(\Rightarrow555557^{1997}\equiv2^{1997}\left(mod5\right)\)

Ta thấy rằng : \(2^2=4\equiv\left(-1\right)\left(mod5\right)\)

\(\Rightarrow\left(2^2\right)^{998}\equiv1\left(mod5\right)\)

\(\Rightarrow2^{1996}\equiv1\left(mod5\right)\)

\(\Rightarrow2^{1997}\equiv2\left(mod5\right)\)

Do đó : \(555557^{1997}\equiv2\left(mod5\right)\)

Vậy \(A\equiv\left(-1\right)-2\equiv\left(-3\right)\left(mod5\right)\)

Hum.... đề sai.

17 tháng 8 2020

Cảm ơn bạn nha nhưng mình nghĩ là đề không sai đâu

30 tháng 11 2017

b, 2x+3y chia hết cho 17

=> 13.(2x+3y) chia hết cho 17   hay 26x+39y chia hết cho 17

Mà 17x và 34y đều chia hết cho 17 => 26x+39y-17x-34y chia hết cho 17 hay 9x+5y chia hết cho 17

=> ĐPCM

k mk nha

30 tháng 11 2017

b) Ta có : 2x+3y chia hết cho 17

=> 9(2x+3y) chia hết cho 17

=> 18x+27y chia hết cho 17 

Giả sử điều cần chứng minh là đúng thì 9x+5y chia hết cho 17 

=> 2(9x+5y) chia hết cho 17

18x+10y chia hết cho 17

=> (18x+27y)-(18x+10y) = 17y chia hết cho 17

Mà 18x+27y chia hết cho 17 nên 18x+10y cũng chia hết cho 17

<=> 9x+5y chia hết cho 17

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)