Tìm GTLN,GTNN biết(nếu có):
A=2.|x+3|+|2x+8|
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2/x+3/+/2x+8/ ta có /2x+8/>bằng 0 => /2x+8/+2/x+3/>bằng 0 nên GTLN là 0 cậu phải tìm giá trị của x để thoả mãn nhé nếu không sẽ không có điểm đâu
B=x-/x/ thì x<bằng /x/nên x-/x/<bằng 0 nên GTLN là 0 cậu phải tìm giá trị của x để thoả mãn nhé nếu không sẽ không có điểm đâu nhélike nhé
Vì \(\left|x+3\right|\ge0\Rightarrow2.\left|x-3\right|\ge0\)
\(\left|2x+8\right|\ge0\Rightarrow2.\left|x+4\right|\ge0\)
nên A đạt GTNN \(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)
*Nếu x=3 =>2.|x-3|=0; |2x+8|=|14|=14 => GTNN của A=14 (1)
*Nếu x=-4 => |2x+8|=0; 2.|x-3|=2.|-7|=14 => GTNN của A=14 (2)
Từ (1) và (2) ta có GTNN của A=14
Mình không biết đúng hay sai, nếu ai thấy đúng thì k mình nhé
A=2.|x+3|+|2x+8|
A=|2x+6|+|2x+8|
A=|-2x-6|+|2x+8|
Áp dụng bđt |a|+|b|>=|a+b| ta có:
A=|-2x-6|+|2x+8|>=|-2x-6+2x+8| = |2|=2
Dấu "=" xảy ra khi 2x+6<=0; 2x+8>=0
=> 2x<=-6; 2x>=-8
=> -8<=2x<=-6
=> -4<=x<=-3
Vậy...
a) \(A=\sqrt[]{x^2-2x+5}\)
\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)
\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)
mà \(\left(x+1\right)^2\ge0,\forall x\in R\)
\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)
b) \(B=5-\sqrt[]{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)
Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)
\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)
\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)
Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)
Ta có: A = 2x2 - 5x - 8 = 2(x2 - 5/2x + 25/16) - 89/8 = 2(x - 5/4)2 - 89/8
Ta luôn có: 2(x - 5/4)2 \(\ge\)0 \(\forall\)x
=> 2(x - 5/4)2 - 89/8 \(\ge\)-89/8 \(\forall\)x
Dấu "=" xảy ra <=> x - 5/4 = 0 <=> x = 5/4
Vậy Min của A = -89/8 tại x = 5/4
Ta có: B = -x2 - 4x + 3 = -(x2 + 4x + 4) + 7 = -(x + 2)2 + 7
Ta luôn có: -(x + 2)2 \(\le\)0 \(\forall\)x
=> -(x + 2)2 + 7 \(\le\)7 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy Max của B = 7 tại x = -2
a: \(f\left(x\right)=2x^2-7x+9\)
=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)
Đặt f'(x)=0
=>\(4x-7=0\)
=>\(x=\dfrac{7}{4}\)
\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)
\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)
\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)
Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)
nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)
b: \(f\left(x\right)=x^2+5x+3\)
=>\(f'\left(x\right)=2x+5\)
f'(x)=0
=>2x+5=0
=>2x=-5
=>\(x=-\dfrac{5}{2}\)
\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)
\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)
\(f\left(6\right)=6^2+5\cdot6+3=69\)
Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)
\(Q=-2\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{2}\le\dfrac{25}{2}\)
\(Q_{max}=\dfrac{25}{2}\) khi \(x=\dfrac{3}{2}\)
\(A=\dfrac{9\left(x^2+2\right)-9x^2+6x-1}{x^2+2}=9-\dfrac{\left(3x-1\right)^2}{x^2+2}\le9\)
\(A_{max}=9\) khi \(x=\dfrac{1}{3}\)
\(A=\dfrac{12x+34}{2\left(x^2+2\right)}=\dfrac{-\left(x^2+2\right)+x^2+12x+36}{2\left(x^2+2\right)}=-\dfrac{1}{2}+\dfrac{\left(x+6\right)^2}{2\left(x^2+2\right)}\le-\dfrac{1}{2}\)
\(A_{min}=-\dfrac{1}{2}\) khi \(x=-6\)
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
Phương pháp tách cho dẽ hiểu
*nghiệm x=-3 và x=-4
chia khoảng
* x<=-4=> A=-2x-6-2x-8=-4x-14 => GTNN A=A(-4)=16-14=2
*-4<=x<=-3=>A=-2x-6+2x+8=8-6=2 A hs
*x>=-3=>A=2x+6+2x+8=4x+14 A nho nhất khi x=-3=> GTNNA=-3.4+14=2
* kết luận GTNN của A la 2
Khi -4<=x<=3
dùng bất đẳng thức trị tuyệt đối không biết bạn có hiểu ko?
!a!+!b!>=!a+b! đẳng thức xẩy ra khi a,b khác dâu" nếu hiểu áp vào ra ngay.