Cho x2 = y2 + z2. CMR: ( 5x - 3y + 4z)( 5x - 3y - 4z) = (3x - 5y)2
Các bạn giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-\left(4z\right)^2\)
\(=\left(3x-5y\right)^2-16z^2\)
Đẳng thức chỉ đúng khi \(z=0\)
Ta có \(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(3x-5y\right)^2\)
\(\Leftrightarrow\left(5x-3y\right)^2-\left(4z\right)^2=\left(3x-5y\right)^2\)
\(\Leftrightarrow25x^2-30xy+9y^2-16z^2=9x^2-30xy+25y^2\)
\(\Leftrightarrow16x^2=16y^2+16z^2\Leftrightarrow x^2=y^2+z^2\)
(5x - 3y + 4z) . (5x - 3y - 4z) = (3x - 5y)2
(5x - 3y)2 - 16z2 = (3x - 5y)2
25x2 - 2.5x.3y + 9y2 - 16z2 = 9x2 - 2.3x.5y + 25y2
16x2 + 9y2 - 16z2 - 25y2 = 0
16x2 - 16y2 - 16z2 = 0
x2 - y2 - z2 = 0
x2 = y2 + z2
Vì \(x^2-y^2-z^2=0\Rightarrow x^2-y^2=z^2\)
Biến đổi vế trái ta có :
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\left(5x-3y\right)^2-16z^2\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)\)
\(=25x^2-30xy+9y^2-16x^2+16y^2\)
\(=9x^2-30xy+25y^2\)
\(=\left(3x-5y\right)^2\) ( ĐPCM)
\(x^2-y^2=4z^2\\ \Leftrightarrow64z^2=16x^2-16y^2\)
\(\left(5x-3y+8z\right)\left(5x-3y-8z\right)\\ =\left(5x-3y\right)^2-64z^2\\ =25x^2-30xy+9y^2-64z^2\\ =25x^2-16x^2+9y^2+16y^2-30xy\\ =9x^2-30xy+25y^2=\left(3x-5y\right)^2\)
Vì x2 - y2 - z2 = 0 => x2 - y2 = z2
Biến đổi vế trái ta có:
(5x-3y+4z)(5x-37-4z)=(3x-5y)2 - 16z2
=25x2 - 30xy + 9y2 - 16(x2 - y2)
= 25x2 - 30xy + 9y2 - 16x2 + 16y2
= 9x2 - 30xy + 25y2
= (3x-5y)2 (đpcm)
\(\left(5x-3y+4z\right)\left(5x-3y-4z\right)=\)
\(=\left(5x-3y\right)^2-16z^2=25x^2-30xy+9y^2-16z^2=\)
\(=25x^2-30xy+9y^2-16\left(x^2-y^2\right)=\)
\(=9x^2-30xy+25y^2=\left(3x-5y\right)^2\)