K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2015

từ x+y+z=0 => x=-(x+y) 

\(x^5+y^5+z^5=x^5+y^5-\left(x+y\right)^5=x^5-x^5+y^5-y^5-5\left(x^4y+2x^3y^2+2x^2y^3+xy^4\right)\)

\(=-5xy\left(x^3+2x^2y+2xy^2+y^3\right)=-5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]\)

\(=-5xy\left(x+y\right)\left(x^2+xy+y^2\right)\)(1)

\(x^2+y^2+z^2=x^2+y^2+\left[-\left(x+y\right)^2\right]=x^2+y^2+\left(x+y\right)^2=2\left(x^2+y^2+xy\right)\)(2) 

\(x^7+y^7+z^7=x^7+y^7-\left(x+y\right)^7=-7xy\left(x^5+3x^4y+5x^3y^2+5x^2y^3+3xy^4+y^5\right)\)

\(=-7xy\left(x+y\right)\left(x^2+y^2+xy\right)\)(đoạn này tách như chỗ mũ 5 sẽ ra) (3)

nhân 10 với (3) và 7 với (1)(2) sẽ ra 2 vế = nhau của điều phải chứng minh.

đây là các phương trình bậc cao, em lên gg gõ bảng Paxcan sẽ ra nha! có qui luật, sắp thi HSG đúng k? ráng học thuộc để áp dụng nha! chúc em học tốt

 

AH
Akai Haruma
Giáo viên
14 tháng 6 2021

Lời giải:

$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$

Mà:

$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$

$=(-z)^3-3xy(-z)+z^3=3xyz$

Và:

\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)

\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)

\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)

Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)

\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)

Ta có đpcm.

 

 

28 tháng 8 2021

x + y + z = 0 ⇒ x 3 + y 3 + z 3 = 3 x y z ⇒ ( x 3 + y 3 + z 3 ) ( x 2 + y 2 + z 2 ) = 3 x y z ( x 2 + y 2 + z 2 ) ⇒ x 5 + y 5 + z 5 + x 2 y 2 ( x + y ) + y 2 z 2 ( y + z ) + z 2 x 2 ( z + x ) = 3 x y z ( x 2 + y 2 + z 2 ) ⇒ x 5 + y 5 + z 5 − x y z ( x y + y x + z x ) = 3 x y z ( x 2 + y 2 + z 2 ) ⇒ 2 ( x 5 + y 5 + z 5 ) = 5 x y z ( x 2 + y 2 + z 2)

28 tháng 8 2021

rất hợp lý

16 tháng 5 2023

Vẫn đề đó hả em

Câu này dùng BĐT Schur là ra luôn cx đc, nhưng mà thế thì hơi mất hứng, anh thử đề xuất phương án này ha

VT=\(cyc\sum x^5.\left(x-y+z\right)\) Gấp đôi vế trái lên và phá ngoặc ra nhóm  về kiểu này

2.VT=(x^6-2x^5y+2xy^5+y^6)+.......tương tự như thế ha

       Giờ chỉ cần mỗi cái ngoặc này >=0 là cả lũ >=0 do tương tự

Mà \(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right).\left(x^2-xy-y^2\right)^2\)  (Cái này em nhóm 2 cái cuối, 2 cái giữa xong triển khai ra là đc)

       Dễ thấy x^2+y^2>=0, cái ngoặc kia là bình phương cũng >=0

 Do đó cái TH kia >=0. Các th còn lại thì cx tương tự

 Cộng vế với vế suy ra 2VT>=0, Hay VT>=0 (đpcm)

16 tháng 5 2023

Anh gửi riêng phần phân tích này

\(x^6-2x^5y+2xy^5+y^6=\left(x^2+y^2\right)\left(x^4-x^2y^2+y^4\right)-2xy\left(x^2+y^2\right)\left(x^2-y^2\right)=\left(x^2+y^2\right).\left(x^4-x^2y^2+y^4-2xy\left(x^2-y^2\right)\right)=\left(x^2+y^2\right)\left(\left(x^4-2x^2y^2+y^4\right)-2xy\left(x^2-y^2\right)+x^2y^2\right)\)Viết tiếp cái ngoặc to thành bình phương là ra cái anh vt chỗ trên đầu nhé

Thử xem có đc ko

HQ
Hà Quang Minh
Giáo viên
20 tháng 9 2023

Đề bài yêu cầu gì vậy em.

Theo đề bài ta có:

x^2=y.z ; y^2=x.z;z^2=x.y

\Rightarrowx.x=y.z

\Rightarrowy.y=x.z

\Rightarrowz.z=x.y

cân bằng phương trình x.x=y.z bằng cách nhân x vào cả hai vế ta có:

x.x.x=y.z.x \Rightarrow x^3=y.z.x

cân bằng phương trình y.y=x.z bằng cách nhân y vào cả hai vế ta có:

y.y.y=x.z.y \Rightarrow y^3=x.z.y

cân bằng phương trình z.z=x.y bằng cách nhân z vào cả hai vế ta có:

z.z.z=x.y.z \Rightarrow z^3=x.y.z

vì y.z.x=x.z.y=x.y.z

\Rightarrow x^3=y^3=z^3

Vì  x^3 ; y^3 ; z^3 Có cùng số mũ và bằng nhau

Nên các cơ số cũng bằng nhau

\Rightarrowx=y=z

Ta có: \(x^2=y\cdot z\)

nên \(z=\dfrac{x^2}{y}\)(1)

Ta có: \(y^2=z\cdot x\)

nên \(z=\dfrac{y^2}{x}\)(2)

Từ (1) và (2) suy ra \(\dfrac{x^2}{y}=\dfrac{y^2}{x}\)

\(\Leftrightarrow x^3=y^3\)

hay x=y(3)

Ta có: \(x^2=y\cdot z\)

nên \(y=\dfrac{x^2}{z}\)(4)

Ta có: \(z^2=x\cdot y\)

nên \(y=\dfrac{z^2}{x}\)(5)

Từ (4) và (5) suy ra \(\dfrac{x^2}{z}=\dfrac{z^2}{x}\)

\(\Leftrightarrow x^3=z^3\)

hay x=z(6)

Từ (3) và (6) suy ra x=y=z(đpcm)