K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2016

ta thấy vế thứ hai có kết quả bằng 0
=>(1999x1998+1998x1997)x0
chằng cần tìm kết quả mà =>B=0

13 tháng 7 2018

bạn học nhà cô Hà dạy Toán cấp 2 đt đúng ko 

Bỏ 1/3 ở cuối nhé

28 tháng 4 2019

Ta có:(1+1999/2)+(1+1998/3)+...(2/1999)(có 1998 tổng<=>1998 số 1)+(2000 - 1998)+400

        = 2001/2+2001/3+...+2001/1999+402

        =2001.(1/2+1/3+...+1/1999)+402(1)

      Thay (1) vào biểu thức trên và tính(tự tính nha!,tk cho mk!!!)

2 tháng 10 2017

\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)

\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)

\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)

\(=>x+2001=0\)

\(x=-2001\)

\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)

\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)

\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)

\(=>x+1998=0\)

\(x=-1998\)

6 tháng 4 2018

dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

28 tháng 5 2019

b) \(\frac{1}{1000}+\frac{13}{1000}+\frac{25}{1000}+...+\frac{87}{1000}+\frac{99}{1000}\)

\(=\frac{1+13+25+...+85+97}{1000}=\frac{\left(97+1\right).\left[\left(97-1\right):12+1\right]:2}{1000}\)

\(=\frac{49.9}{1000}=\frac{441}{1000}.\) ( Đề bài sai nhé bạn tử số : 1; 13; 25; 37; 49 ; 61; 73; 85 ; 97. )

27 tháng 5 2019

Ta có

\(D=\frac{2^{2x+1}}{2^{2x}-2}+\frac{2^{2\left(1-x\right)+1}}{2^{2\left(1-x\right)}-2}=\frac{2^{2x}}{2^{2x-1}-1}+\frac{2^{2\left(1-x\right)}}{2^{1-2x}-1}\)

Mà \(2^{1-2x}=\frac{1}{2^{2x-1}}\)(do 1-2x+2x-1=0)

=>\(D=\frac{2^{2x}}{2^{2x-1}-1}+\frac{2^{2\left(1-x\right)}}{\frac{1}{2^{2x-1}}-1}=\frac{2^{2x}-2^{2\left(1-x\right)}.2^{2x-1}}{2^{2x-1}-1}=\frac{2^{2x}-2^1}{2^{2x-1}-1}=\frac{2\left(2^{2x-1}-1\right)}{2^{2x-1}-1}=2\)

Áp dụng D ta được

\(P\left(\frac{1}{1998}\right)+P\left(\frac{1997}{1998}\right)=2\)

\(P\left(\frac{2}{1998}\right)+P\left(\frac{1996}{1998}\right)=2\)

..............................................................

Do \(x\ne\frac{1}{2}\)nên không có \(P\left(\frac{999}{1998}\right)\)

\(P\left(\frac{998}{1998}\right)+P\left(\frac{1000}{1998}\right)=2\)

=> \(A=1997+2+2+....+2\)(998 số 2)

=> \(A=1997+2.998=3993\)

Vậy A=3993

28 tháng 5 2019

#)Trả lời :

\(a,\frac{2}{3}:\frac{5}{7}.\frac{5}{7}:\frac{2}{3}+1934\)

\(=\left(\frac{2}{3}:\frac{2}{3}\right).\left(\frac{5}{7}:\frac{5}{7}\right)+1934\)

\(=1.1+1934\)

\(=1935\)

              #~Will~be~Pens~#

28 tháng 5 2019

Trả lời : 

\(a,\text{ }\frac{2}{3}\text{ : }\frac{5}{7}\text{ x }\frac{5}{7}\text{ : }\frac{2}{3}+1934\)

\(=\left(\frac{2}{3}\text{ : }\frac{2}{3}\right)\text{ x }\left(\frac{5}{7}\text{ : }\frac{5}{7}\right)+1934\)

\(=1\text{ x }1+1934\)

\(=1935\)

13 tháng 4 2022

\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{2}:1\dfrac{1}{2}-1\dfrac{1}{3}\right)\)

\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{2}:\dfrac{3}{2}-\dfrac{4}{3}\right)\)

\(=\left(1999\times1998+1998\times1997\right)\times\left(1+\dfrac{1}{3}-\dfrac{4}{3}\right)\)

\(=\left(1999\times1998+1998\times1997\right)\times\left(\dfrac{4}{3}-\dfrac{4}{3}\right)\)

\(=\left(1999\times1998+1998\times1997\right)\times0\)

\(=0\)