chứng minh rằng 2*x^2+4*y^2+4*x*y-6*x+10>0 với mọi số thực x và y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(x^2+2xy+y^2+1\)
\(=\left(x+y\right)^2+1\)
Vì \(\left(x+y\right)^2\ge0\) với mọi x và y
\(\Rightarrow\left(x+y\right)^2+1\ge1\)
\(\Rightarrow\left(x+y\right)^2+1>0\) với mọi x
b) Ta có:
\(x^2-x+1\)
\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x
\(x^2-x+1>0\)
\(\Leftrightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)(luôn đúng)
\(\RightarrowĐPCM\)
Sửa đề: \(A=3x^2-6x+4=3\left(x^2-2x+\dfrac{4}{3}\right)\)
\(A=3\left(x^2-2x+1+\dfrac{1}{3}\right)\)
\(A=3\left(x^2-2x+1\right)+1\)
\(A=3\left(x-1\right)^2+1>0\left(đpcm\right)\)
Ta có : x2 - xy + y2 + 1
\(=x^2-2x.\frac{y}{2}+\frac{y^2}{4}+\frac{3y^2}{4}+1\)
\(=\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\)
Mà \(\left(x-\frac{y}{2}\right)^2\ge0\forall x\)
\(\left(\frac{3y}{2}\right)^2\ge0\forall x\)
Nên \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1\ge1\forall x\)
Vậy \(\left(x-\frac{y}{2}\right)^2+\left(\frac{3y}{2}\right)^2+1>0\forall x\)
Hay : x2 - xy + y2 + 1 > 0 \(\forall x\)
Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)
\(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)
=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)
^_^
\(Q=x^2+6y^2-2xy-12x+2y+2017\)
\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)
\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)
\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)
Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)
\(\Rightarrow Q>0\)
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
\(x^2+3xy+4y^2+1=\left(x^2+2.x.\frac{3}{2}y+\frac{9}{4}y^2\right)+\frac{7}{4}y^2+1\)
\(=\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\)
Vì \(\left(x+\frac{3}{2}y\right)^2\ge0;\frac{7}{4}y^2\ge0\) nên \(\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2\ge0\)
\(\Rightarrow\left(x+\frac{3}{2}y\right)^2+\frac{7}{4}y^2+1\ge1>0\)(đpcm)
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{y}{x}+\frac{x}{y}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\)
\(\Leftrightarrow\frac{\left(x^2-xy+y^2\right)\left(x^2-2xy+y^2\right)}{x^2y^2}\ge0\)
\(\Leftrightarrow\frac{\left[\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2\right]\left(x-y\right)^2}{x^2y^2}\ge0\) ( đúng )
Vậy đẳng thức đã được chứng minh .
Dấu \("="\) xảy ra khi \(x=y\)
DƯƠNG PHAN KHÁNH DƯƠNG: Dùng AM-GM cũng được mà
Áp dụng BĐT AM-GM ta có:\(\left\{{}\begin{matrix}\frac{x^2}{y^2}+1\ge2.\frac{x}{y}\\\frac{y^2}{x^2}+1\ge2.\frac{y}{x}\\\frac{x}{y}+\frac{y}{x}\ge2\end{matrix}\right.\)
Dấu " = " xảy ra <=> x=y
\(\Rightarrow\frac{x^2}{y^2}+1+\frac{y^2}{x^2}+1+2\ge2\left(\frac{x}{y}+\frac{y}{x}\right)+2\)
Có: \(2\left(\frac{x}{y}+\frac{y}{x}\right)+2-3\left(\frac{x}{y}+\frac{y}{x}\right)=\left(\frac{x}{y}+\frac{y}{x}\right)\left(2-3\right)+2\ge2.\left(-1\right)+2=0\)\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\)
Dấu " = " xảy ra <=> x=y
a, 3x-7x-2>5x+4
<-> 3x-7x-5x > 4+2
<-> -9x >6
<-> x<-2/3
b, 2x2+4x+3>0 <=> 2(x2+2x+1)-2+3=2(x+1)2+1
vì 2(x+1)2 >0 ;1>0 => 2x2+4x+3 >0
\(A=2x^2+4y^2+4xy-6z+10\)
\(=\left(x^2+4y^2+4xy\right)+\left(x^2-6x+9\right)+1\)
\(=\left(x+2y\right)^2+\left(x-3\right)^2+1\)
Mà \(\hept{\begin{cases}\left(x+2y\right)^2\ge0\\\left(x-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow A\ge0+0+1=1>0\)
Vậy ...