K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

ta có: 3=2^2-1

thay vào ta được: ''(2^2-1)(2^2+1)'' sử dụng hằng đẳng thức ta được (2^4-1)(2^4+1) tương tự ...  ta được đáp án là (2^32-1) 

hãy chon đúng cho mình ^ - ^

13 tháng 9 2015

c;=(50-49)(50+49)+(48-47)(48+47)+.............+(2+1)(2-1)


=50+49+48+............+1


=(50+1)50=2550:2=1275


d;=(2^4-1)(2^4+1)(2^8+1)(2^16+1)


=(2^8-1)(2^8+1)(2^16+1)


=(2^16-1)(2^16+1)


=2^32-1



e;=(3-1)(3+1)(3^2+1)...........(3^16+1)


=(3^2-1)(3^2+1)..............(3^16+1)


=(3^16-1)(3^16+1)=3^32-1


tu tinh ket qua luy thua tao khong thua hoi dau



2 tháng 7 2015

3(2^2+1)(2^4+1)(2^8+1)(2^16+1)

=(22-1)(22+1)(24+1)(28+1)(216+1)

=(24-1)(24+1)(28+1)(216+1)

=(28-1)(28+1)(216+1)

=(216-1)(216+1)

=232-1

10 tháng 8 2023

7) \(A=1^2-2^2+3^2-4^2+...-2004^2+2005^2\)

\(A=\left(-1\right)\left(1^{ }+2\right)+\left(-1\right)\left(3+4\right)+...+\left(-1\right)\left(2003+2004\right)+2005^2\)

\(A=-\left(1+2+3+...+2004\right)+2005^2\)

\(A=-\dfrac{2004.\left(2004+1\right)}{2}+2005^2\)

\(A=-1002.2005+2005^2\)

\(A=2005\left(2005-1002\right)=2005.1003=2011015\)

10 tháng 8 2023

8) \(B=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\dfrac{\left(2^2-1\right)}{2-1}\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{32}-1\right)\left(2^{32}+1\right)-2^{64}\)

\(B=\left(2^{64}-1\right)-2^{64}\)

\(B=-1\)

15 tháng 7 2016

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow2^{64}-1\)

10 tháng 10 2020

TUI ĐANG GẤP CHO TÔI HỎI BÀI NÀY LỚP 2 NHA\\\\

AN CÓ 180 CÁI KẸO.BÌNH CÓ 160. HỎI BÌNH CÓ MẤY CÁI KẸO

10 tháng 10 2020

a) Ta có: \(2.4.\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{16}+1\right)\)

\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(=3^{32}-1\)

20 tháng 4 2016

b)Ta có:\(A=1+\frac{1}{2.\left(1+2\right)}+\frac{1}{3.\left(1+2+3\right)}+...+\frac{1}{16.\left(1+2+3+...+16\right)}\)

                 \(=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+...+\frac{1}{16}.\left(1+2+3+...+16\right)\)

                 \(=1+\frac{1}{2}.3+\frac{1}{3}.6+...+\frac{1}{16}.136\)

                 \(=1+1,5+2+...+8,5\)

                 \(=\frac{\left(8,5+1\right).\left[\left(8,5-1\right):0,5+1\right]}{2}=76\)

19 tháng 4 2016

B=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}<\)                                                                               

 B=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

B=\(1-\frac{1}{8}=\frac{8}{8}-\frac{7}{8}=\frac{1}{8}<2\)

Vậy 1/8<2 hay 1/8<16/8

8 tháng 6 2023

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\\ =\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\\ =\left(2^{16}-1\right)\left(2^{16}+1\right)\\ =2^{32}-1 \)