Cho tam giác ABC biết AB= 3cm AC =4cm, BC=5cm
Trên tia đối của tia AC lấy điểm D sao cho AD=AC
a chứng minh tam giác ABC vuông
b chứng minh tam giác BCD cân
c gọi E là trung điểm của BD,CE cắt AB tại O. tính OA,OC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(AB^2+AC^2=3^2+4^2=25\Rightarrow BC^2=5^2=25\)
\(\Rightarrow AB^2+AC^2=BC^2\)(định lý đảo py-ta-go)
\(\Rightarrow\Delta ABC\)vuông tại A
b) Theo câu a, tam giác ABC vuông tại A\(\Rightarrow BA\perp DC\)
Mà AC=AD (gt)
=> BA là đường cao và đồng thời là đường trung tuyến của tam giác BCD
=> tam giác BCD cân tại B
Bài làm
a) Ta có: BC2 = 52 = 25 cm
AC2 + AB2 = 32 + 42 = 25 cm
=> BC2 = AC2 + AB2
=> Tam giác ABC vuông tại A ( theo Pytago đảo )
b) Xét tam giác BAD và tam giác BAC có:
AD = AC ( gt )
^BAD = ^BAC = 90o
AB chung
=> Tam giác BAD = tam giác BAC ( c.g.c )
=> BD = BC ( hai cạnh tương ứng )
=> tam giác BCD cân tại B
a: Xét ΔBCD có
BA là đường cao
BAlà trung tuyến
=>ΔBCD cân tại B
=>BC=BD
b,c: Xét ΔBDC có
BA,CE là trung tuyến
BA cắt CE tại K
=>K là trọng tâm
=>AK=1/3*AB=1cm và CK=2/3CE
=>\(CK=\sqrt{1^2+4^2}=\sqrt{17}\)
=>\(CE=\dfrac{3}{2}\sqrt{17}\left(cm\right)\)
CD=4+4=8cm
=>CE<CD
a)xét ΔBDA và ΔBCA có:
AB là cạnh chung
\(\widehat{BAD}=\widehat{BAC}=90^o\)
AD=AC(gt)
\(\Rightarrow\Delta BDA=\Delta BCA\)(c-g-c)
\(\Rightarrow BD=BC\)(2 cạnh tương ứng)
\(\Rightarrow\Delta BCD\) cân tại B(đ.p.ch/m)
vì E là trung điểm của BD
\(\Rightarrow CE\) là đường trung tuyến
vì AD=AC \(\Rightarrow\)AB là đường trung tuyến
Do đó O là trọng tâm của ΔBCD
\(\Rightarrow OA=\dfrac{1}{3}AB\)
Mà AB=a \(\Rightarrow OA=\dfrac{1}{3}a\)
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC