Giúp mình giải các câu này với mình cảm ơn các bạn nhiều ^^ Câu 1: Thực hiện phép trừ 3/2x+6 - x-6/2x^2+6x Câu 2: Với giá trị nào của x thì giá trị của phân thức 7x/x-2 được xác định Câu 3: Tứ giác ABCD có Â=110 độ,B= 120 độ,D=75 độ tính số đo góc C Câu 4: cho tam giác ABC cân tại A đường cao AH trên cạnh AB lấy điểm I,trên cạnh AC lấy điểm K sao cho AI=AK chứng minh rằng điểm I đối xứng với điểm K qua AH
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=-x^2+3mx-2\)
\(\Rightarrow\)\(f\left(6\right)=-6^2+3m.6-2=-38+18m\)
\(g\left(x\right)=2x+5m\)
\(\Rightarrow\)\(g\left(-2\right)=2.\left(-2\right)+5m=-4+5m\)
Do \(f\left(6\right)=g\left(-2\right)\)nên
\(-38+18m=-4+5m\)
\(\Leftrightarrow\)\(13m=34\)
\(\Leftrightarrow\)\(m=\frac{34}{13}\)
Vậy...
a>(8x^2y+10xy6^2-6xy):2xy=4xy+5y-3
b>(3x^2-4x).(2x-6)=6x^3-26x^2+24x
1: \(=\left(x-1\right)^2\)
2: \(x\in\left\{0;20\right\}\)
Câu 13:
\(1,=\left(x-1\right)^2\\ 2,\Leftrightarrow x\left(x-20\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=20\end{matrix}\right.\\ 3,\text{Đề lỗi}\)
Câu 14:
\(1,ĐK:x\ne-2\\ 2,=\dfrac{\left(x+2\right)^2}{x+2}=x+2\\ 3,\Leftrightarrow x+2=0\Leftrightarrow x=-2\left(ktm\right)\Leftrightarrow x\in\varnothing\)
Câu 16:
\(A=x^2-4x+4+20=\left(x-2\right)^2+20\ge20\)
Dấu \("="\Leftrightarrow x=2\)
Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!
a:6x-5-9x^2
=-(9x^2-6x+5)
=-(9x^2-6x+1+4)
=-(3x-1)^2-4<=-4
=>A>=2/-4=-1/2
Dấu = xảy ra khi x=1/3
b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)
2x^2-3x+2=2(x^2-3/2x+1)
=2(x^2-2*x*3/4+9/16+7/16)
=2(x-3/4)^2+7/8>=7/8
=>-1/2x^2-3x+2<=-1:7/8=-8/7
=>B<=-8/7+2=6/7
Dâu = xảy ra khi x=3/4
\(1,\\ a,\dfrac{x^2}{x+1}+\dfrac{x}{x+1}=\dfrac{x^2+x}{x+1}=\dfrac{x\left(x+1\right)}{x+1}=x\)
\(b,\left(\dfrac{2xy}{x^2-y^2}+\dfrac{x-y}{2x+2y}\right):\dfrac{x+y}{2x}=\left(\dfrac{4xy}{2\left(x-y\right)\left(x+y\right)}+\dfrac{\left(x-y\right)^2}{2\left(x-y\right)\left(x+y\right)}\right).\dfrac{2x}{x+y}=\dfrac{4xy+x^2-2xy+y^2}{2\left(x-y\right)\left(x+y\right)}.\dfrac{2x}{x+y}=\dfrac{2x\left(x^2+2xy+y^2\right)}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{2x\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)^2}=\dfrac{x}{x-y}\)
\(\left(X^2+2x+1\right)+\left(4y^2+\frac{4.1y}{4}+\frac{1}{16}\right)+2-\frac{1}{16}.\)
\(\left(x+1\right)^2+\left(2y+\frac{1}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)
\(x^2+4y^2+2x-y+2\)
\(=\left(x^2+2x+1\right)+\left[\left(2y\right)^2-2.2y.\frac{1}{4}+\left(\frac{1}{4}\right)^2\right]+\frac{15}{16}\)
\(=\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\)
Ta có: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left(2y-\frac{1}{4}\right)\ge0\forall y\end{cases}\Rightarrow\left(x+1\right)^2+\left(2y-\frac{1}{4}\right)+\frac{15}{16}\ge\frac{15}{16}}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(2y-\frac{1}{4}\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\2y-\frac{1}{4}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}}\)
Vậy GTNN của \(x^2+4y^2+2x-y+2=\frac{15}{16}\Leftrightarrow\hept{\begin{cases}x=-1\\y=\frac{1}{8}\end{cases}}\)
Tham khảo nhé~