Tìm số tự nhiên x:
3x [82- 2.(25- 1)] = 2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\left( {13x{\rm{ }}-{\rm{ }}{{12}^2}} \right):{\rm{ }}5{\rm{ }} = {\rm{ }}5\\13x{\rm{ }}-{\rm{ }}{12^2} = 5.5\\13x{\rm{ }}-{\rm{ }}144 = 25\\13x = 25 + 144\\13x = 169\\x = 13\end{array}\)
Vậy \(x = 13\)
b)
\(\begin{array}{l}3x\left[ {{8^2} - 2.\left( {{2^5} - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.\left( {32 - {\rm{ }}1} \right)} \right]{\rm{ }} = {\rm{ }}2022\\3x\left[ {64 - 2.31} \right]{\rm{ }} = {\rm{ }}2022\\3x\left( {64 - 62} \right){\rm{ }} = {\rm{ }}2022\\3x.2 = 2022\\6x = 2022\\x = 337\end{array}\)
Vậy \(x = 337.\)
\(3x\left[8^2-2\left(2^5-1\right)\right]=2022\\ \Rightarrow3x\left[64-2\left(32-1\right)\right]=2022\\ \Rightarrow3x\left(64-2\cdot31\right)=2022\\ \Rightarrow3x\left(64-62\right)=2022\\ \Rightarrow3x\cdot2=2022\\ \Rightarrow3x=2022:2\\ \Rightarrow3x=1011\\ \Rightarrow x=\dfrac{1011}{3}=337\)
3x[8² - 2(2⁵ - 1)] = 2022
3x(64 - 2.31) = 2022
3x.1 = 2022
3x = 2022
x = 2022 : 3
x = 674
(13x-122):5=5
13x-122 = 5 . 5
13x-122 = 25
13x = 25 + 122
13x = 169
x = 169 : 13
x = 13
Vậy x = 13
3x[82-2.(25-1) ]=2022
3x [ 82-2.31 ]= 2022
3x [64 -62 ] = 2022
3x . 2 = 2022
3x = 2022 : 2
3x = 1011
x = 1011 : 3
x = 337
Vậy x = 337
a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)
\(\left|x-1\right|^{2023}>=0\forall x\)
=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)
mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)
=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)
\(P=x^{2023}+\left(y-10\right)^{2023}\)
\(=1^{2023}+\left(9-10\right)^{2023}\)
=1-1
=0
c: \(\left|x-3\right|>=0\forall x\)
=>\(\left|x-3\right|+2>=2\forall x\)
=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)
mà \(\left|y+3\right|>=0\forall y\)
nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)
=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)
Dấu '=' xảy ra khi x-3=0 và y-3=0
=>x=3 và y=3
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{505}{1011}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1010}{1011}\)
=>1/x+1=-1009/2022
=>x+1=-2022/1009
hay x=-3031/1009
A, ( 13x - 12^2 ) : 5 = 5
=> 13x - 144 = 25
=> 13x = 163
=> 13x = 13 . 13
=> x = 13
B, 3x [ 8^2 - 2 ( 2^5 - 1 ) ] = 2022
3x [ 64 - 2 . 31 ] = 2022
3x . 2 = 2022
3x = 1011
x = 337
HỌC TỐT
Bài 1:
a: Ta có: \(48751-\left(10425+y\right)=3828:12\)
\(\Leftrightarrow y+10425=48751-319=48432\)
hay y=38007
b: Ta có: \(\left(2367-y\right)-\left(2^{10}-7\right)=15^2-20\)
\(\Leftrightarrow2367-y=1222\)
hay y=1145
Bài 2:
Ta có: \(8\cdot6+288:\left(x-3\right)^2=50\)
\(\Leftrightarrow288:\left(x-3\right)^2=2\)
\(\Leftrightarrow\left(x-3\right)^2=144\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=15\\x=-9\end{matrix}\right.\)
Bài 1:vì 15 chia hết cho 5 suy ra 2022.15 chia hết cho 5
vì 25 chia hết cho 5 suy ra 2022.15 + 25 chia hết cho 5
3x [82 - 2.(25 - 1)] = 2022
3x [82 - 2.(32 - 1)] = 2022
3x [82 - 2.31] = 2022
3x [64 - 62] = 2022
3x . 2 = 2022
3x = 2022 : 2
3x = 1011
x = 1011 : 3
x = 337
3x [8^2-2.(2^5-1)] = 2022
3x [64-2.(32-1)] = 2022
3x [64-2.31] = 2022
3x [64-62] = 2022
3x . 2 = 2022
3x = 2022 : 2
3x = 1011
x = 1011 : 3
x = 337.
Vậy x = 337.