\(\dfrac{2x-2}{x+2}+\dfrac{3}{x+2}=\dfrac{x}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk giải giúp bạn phần a thôi nha! (Dài lắm, lười :v)
a, 1 + \(\dfrac{x}{3-x}\) = \(\dfrac{5x}{\left(x+2\right)\left(x+3\right)}+\dfrac{2}{x+2}\) (x \(\ne\) -2; x \(\ne\) \(\pm\) 3)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2\left(x+3\right)}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{5x+2x+6}{\left(x+2\right)\left(x+3\right)}\)
\(\Leftrightarrow\) \(\dfrac{3}{3-x}=\dfrac{7x+6}{x^2+5x+6}\)
Vì 3 - x \(\ne\) 0; x2 + 5x + 6 \(\ne\) 0
\(\Rightarrow\) 3(x2 + 5x + 6) = (7x + 6)(3 - x)
\(\Leftrightarrow\) 3x2 + 15x + 18 = 21x - 7x2 + 18 - 6x
\(\Leftrightarrow\) 10x2 = 0
\(\Leftrightarrow\) x = 0 (TM)
Vậy S = {0}
Chúc bn học tốt! (Nếu bạn cần phần nào khác mk có thể giúp bn chứ đừng có đăng hết lên, ít người làm lắm :v)
b)\(\dfrac{x+2}{x-2}-\dfrac{2}{x^2-2x}=\dfrac{1}{x}\\ \Leftrightarrow\dfrac{x\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2}{x\left(x-2\right)}=\dfrac{x-2}{x\left(x-2\right)}\Leftrightarrow x^2+2x-2=x-2\\ \Leftrightarrow x^2+2x-2-x+2=0\Leftrightarrow x^2-x=0\\ \Leftrightarrow x\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy..
\(a,\dfrac{x^2+2}{x^3+1}-\dfrac{1}{x+1}\left(ĐKXĐ:x\ne-1\right)\\ =\dfrac{x^2+2-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\\ =\dfrac{x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{1}{x^2-x+1}\\ c,\dfrac{1}{2-2x}-\dfrac{3}{2+2x}+\dfrac{2x}{x^2-1}\\ =\dfrac{-1}{2\left(x-1\right)}-\dfrac{3}{2\left(x+1\right)}+\dfrac{2x}{\left(x-1\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm1\right)\\ =\dfrac{-1\left(x+1\right)-3\left(x-1\right)+2x.2}{2\left(x+1\right)\left(x-1\right)}\\ =\dfrac{-x-1-3x+3+4x}{2\left(x+1\right)\left(x-1\right)}=\dfrac{2}{2\left(x+1\right)\left(x-1\right)}=\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)
m: \(=\left(\dfrac{2x}{\left(x-1\right)\left(x+1\right)}+\dfrac{x-1}{2\left(x+1\right)}\right)\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)
\(=\dfrac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\cdot\dfrac{2x}{x+1}-\dfrac{3}{x-1}\)
\(=\dfrac{\left(x+1\right)^2\cdot x}{\left(x-1\right)\left(x+1\right)^2}-\dfrac{3}{x-1}=\dfrac{x}{x-1}-\dfrac{3}{x-1}=\dfrac{x-3}{x-1}\)
p: \(=\left(\dfrac{-\left(x+2\right)}{x-2}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\right)\cdot\dfrac{-x^2\left(x-2\right)}{x\left(x-3\right)}\)
\(=\dfrac{-x^2-4x-4+4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{-x\left(x-2\right)}{x-3}\)
\(=\dfrac{4x^2-8x}{\left(x+2\right)}\cdot\dfrac{-x}{x-3}=\dfrac{-4x^2\left(x-2\right)}{\left(x+2\right)\left(x-3\right)}\)
\(a,=\dfrac{4x+8}{x^2+2x}=\dfrac{4\left(x+2\right)}{x\left(x+2\right)}=\dfrac{4}{x}\\ b,=\dfrac{\left(2x-3\right)-\left(2x-4\right)}{x-2}=\dfrac{2x-3-2x+4}{x-2}=\dfrac{1}{x-2}\\ c,=\dfrac{2x-1-3x-2}{x+3}=\dfrac{-x-3}{x+3}=\dfrac{-\left(x+3\right)}{x+3}=-1\\ d,=\dfrac{11x-18+x}{2x-3}=\dfrac{12x-18}{2x-3}=\dfrac{6\left(2x-3\right)}{2x-3}=6\)
\(e,=\dfrac{3x-6-9x+3}{2x+1}=\dfrac{-6x-3}{2x+1}=\dfrac{-3\left(2x+1\right)}{2x+1}=-3\)
1: Sửa đề: 2/x+2
\(\dfrac{2x+1}{x^2-4}+\dfrac{2}{x+2}=\dfrac{3}{2-x}\)
=>\(\dfrac{2x+1+2x-4}{x^2-4}=\dfrac{-3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
=>4x-3=-3x-6
=>7x=-3
=>x=-3/7(nhận)
2: \(\Leftrightarrow\dfrac{\left(3x+1\right)\left(3-x\right)+\left(3+x\right)\left(1-3x\right)}{\left(1-3x\right)\left(3-x\right)}=2\)
=>9x-3x^2+3-x+3-9x+x-3x^2=2(3x-1)(x-3)
=>-6x^2+6=2(3x^2-10x+3)
=>-6x^2+6=6x^2-20x+6
=>-12x^2+20x=0
=>-4x(3x-5)=0
=>x=5/3(nhận) hoặc x=0(nhận)
3: \(\Leftrightarrow x\cdot\dfrac{8}{3}-\dfrac{2}{3}=1+\dfrac{5}{4}-\dfrac{1}{2}x\)
=>x*19/6=35/12
=>x=35/38
1: Ta có: \(\dfrac{x-4}{3}+2x=\dfrac{4x-2}{6}\)
\(\Leftrightarrow2x-8+12x=4x-2\)
\(\Leftrightarrow10x=6\)
hay \(x=\dfrac{3}{5}\)
2: Ta có: \(\dfrac{5x-2}{5}-2=\dfrac{1-2x}{3}\)
\(\Leftrightarrow15x-6-30=10-20x\)
\(\Leftrightarrow35x=46\)
hay \(x=\dfrac{46}{35}\)
3: Ta có: \(\dfrac{x-2}{2}-\dfrac{2}{3}=x-1\)
\(\Leftrightarrow3x-6-4=6x-6\)
\(\Leftrightarrow-3x=4\)
hay \(x=-\dfrac{4}{3}\)
\(\dfrac{4x^2-3x+5}{x^3-1}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(\Leftrightarrow\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1+2x}{x^2+x+1}-\dfrac{6}{x-1}\)
\(ĐKXĐ:x\ne1\)
\(\dfrac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{(1+2x)\left(x-1\right)}{(x^2+x+1)\left(x-1\right)}-\dfrac{6\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\)
\(\Rightarrow4x^2-3x+5-\left(1+2x\right)\left(x-1\right)-6\left(x^2+x+1\right)\)
\(\Rightarrow4x^2-3x+5-\left(x-1+2x^2-2x\right)-6x^2-6x-6\)
\(\Rightarrow4x^2-3x+5-x+1-2x^2+2x-6x^2-6x-6\)
\(\Rightarrow-4x^2-8x\)
⇒-4x(x-4)
\(a,=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\\ b,=\dfrac{6x-3+6x^2-6x+2x^2+1}{2x\left(2x-1\right)}=\dfrac{8x^2-2}{2x\left(2x-1\right)}\\ =\dfrac{2\left(2x-1\right)\left(2x+1\right)}{2x\left(2x-1\right)}=\dfrac{2x+1}{x}\\ c,=\dfrac{x^3+x^2+x+2x-2+4x^2-1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x^3+5x^2+3x-3}{x^3-1}\)
a: \(=\dfrac{x^2-x+x+1+2x}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{x+1}{x-1}\)
b: \(=\dfrac{x^2+2x-4x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x-2}{x+2}\)
c: \(=\dfrac{2x^2-3x-9-x^2+3x+x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{2x^2+6x}{\left(x-3\right)\left(x+3\right)}=\dfrac{2x}{x-3}\)
\(\dfrac{2x-2}{x+2}+\dfrac{3}{x+2}=\dfrac{x}{x+2}\left(x\ne-2\right)\\ < =>\dfrac{2x+1}{x+2}=\dfrac{x}{x+2}\\ =>2x+1=x\\ < =>2x-x=-1\\ < =>x=-1\left(TMDK\right)=>S=\left\{-1\right\}\)