K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

Các n thỏa mãn\(\hept{\begin{cases}n\inℤ\\n>1\end{cases}}\)

bởi \(A=\frac{2\sqrt{n-1}}{\sqrt{n-1}}=2\)không phụ thuộc vào giá trị của biến nên chỉ cần điều kiện xác định của phân thức và căn bậc hai thôi.

28 tháng 7 2016

a)= \(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{100}-\sqrt{99}}{100-99}\)

=\(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\)

\(-1+\sqrt{100}\)

= -1 +10

=9

28 tháng 7 2016

b)Ta có\(\left(\sqrt{n+1}-\sqrt{n}\right)\cdot\left(\sqrt{n+1}+\sqrt{n}\right)\)=n+1-n=1  (1)

Lại có:\(\frac{1}{\sqrt{n+1}+1}\cdot\left(\sqrt{n+1}+1\right)=1\)(2)

Từ (1) và (2)=>\(\left(\sqrt{n+1}-1\right)=\frac{1}{\sqrt{n+1}+1}\)

22 tháng 8 2019

\(Q=\frac{2\sqrt{x}-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

b.\(Q< 1\)

\(\Leftrightarrow x-\sqrt{x}-2< x-5\sqrt{x}+6\)

\(\Leftrightarrow4\sqrt{x}-8< 0\)

\(\Leftrightarrow0\le x< 4\)

Vay de Q<1 thi \(0\le0< 4\)

10 tháng 9 2021

\(\sqrt{n+1}-\sqrt{n}=\dfrac{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}{\sqrt{n+1}+\sqrt{n}}=\dfrac{1}{\sqrt{n+1}+\sqrt{n}}< \dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\\ \Leftrightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}\left(1\right)\\ \sqrt{n}-\sqrt{n-1}=\dfrac{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}{\sqrt{n}+\sqrt{n-1}}=\dfrac{1}{\sqrt{n}+\sqrt{n-1}}>\dfrac{1}{\sqrt{n}+\sqrt{n}}=\dfrac{1}{2\sqrt{n}}\\ \Leftrightarrow2\left(\sqrt{n}-\sqrt{n-1}\right)>\dfrac{1}{\sqrt{n}}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐfcm\)

9 tháng 4 2020

a,Để biểu thức A=n+2/n+3 là phân số

<=>n+3 khác 0 và n thuộc Z (bạn viết kí hiệu nha!!!)

<=>n khác -3 và n thuộc Z

Vậy,....

b,+Với n thuộc Z để phân số A=n+2/n+3 có giá trị là một số nguyên thì n+2 chia hết cho n+3(1) ( bạn viết kí hiệu nha)

   +Vì n thuộc Z

   =>n+3 chia hết cho n+3(2)

Từ (1) và (2)

=>(n+3)-(n+2) chia hết cho n+3

=>n+3-n-2 chia hết cho n+3

=>1 chia hết cho n+3

=>n+3 thuộc Ư(1)

Mà Ư(1)=(-1;1)

nên n+3 thuộc -1 và 1

+Với n+3= -1                               +Với n+3=1

             n=(-1)-3                                       n=1-3

             n= -4 thuộc Z                             n= -2 thuộc Z

+Thử lại:  (bạn tự thử lại nha)

Vậy.....

Bạn nhớ k đúng cho mik nha!!

Chúc bạn hok tốt!!