Tìm x và y, biết:
[ x ] + { y } = 1,5 và [ y ] + { x } = 3,5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : |x - 3,5| + |y - 1,5| = 0
Mà |x - 3,5| \(\ge0\forall x\in R\)
|y - 1,5| \(\ge0\forall x\in R\)
=> |x - 3,5| = |y - 1,5| = 0
<=> \(\hept{\begin{cases}x-3,5=0\\y-1,5=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=3,5\\y=1,5\end{cases}}\)
Vậy x = 3,5 , y = 1,5
a/ y - 8,5 = 1,8 x 3,5
y - 8,5 = 6,3
y = 6,3 + 8,5
y = 14,8
b/ y : 1,5 = 23,4 + 4,8
y : 1,5 = 28,2
y = 28,2 x 1,5
y = 42,3
a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)
b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)
c, tương tự b
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)
Do đó: x=15; y=25
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
Do đó: x=45; y=27; z=18
\(\dfrac{x}{y}=1,5\Rightarrow x=1,5y\)
\(x+y=10\Rightarrow1,5y+y=10\Rightarrow2,5y=10\Rightarrow y=10:2,5=4\)
\(\Rightarrow x=10-4=6\)
Vậy \(\left\{{}\begin{matrix}x=6\\y=4\end{matrix}\right.\)
a: Vì x và y tỉ lệ nghịch với 3,5 nên 3x=5y
=>x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=1500
nên \(15k^2=1500\)
\(\Leftrightarrow k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
b: Vì x,y tỉ lệ nghịch với 3,2 nên 3x=2y
=>x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: \(x^2+y^2=325\)
\(\Leftrightarrow4k^2+9k^2=325\)
\(\Leftrightarrow k^2=25\)
Trường hợp 1: k=5
=>x=10; y=15
Trường hợp 2: k=-5
=>x=-10; y=-15
a: Vì x và y tỉ lệ nghịch với 3,5 nên 3x=5y
=>x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=1500
nên \(15k^2=1500\)
\(\Leftrightarrow k^2=100\)
Trường hợp 1: k=10
=>x=50; y=30
Trường hợp 2: k=-10
=>x=-50; y=-30
b: Vì x,y tỉ lệ nghịch với 3,2 nên 3x=2y
=>x/2=y/3
Đặt x/2=y/3=k
=>x=2k; y=3k
Ta có: \(x^2+y^2=325\)
\(\Leftrightarrow4k^2+9k^2=325\)
\(\Leftrightarrow k^2=25\)
Trường hợp 1: k=5
=>x=10; y=15
Trường hợp 2: k=-5
=>x=-10; y=-15
a) Giải:
Ta có: \(3x=5y\Rightarrow\frac{x}{5}=\frac{y}{3}\) và \(x.y=1500\)
Đặt \(\frac{x}{5}=\frac{y}{3}=k\)
\(\Rightarrow x=5k,y=3k\)
Mà \(xy=1500\)
\(\Rightarrow5.k.3.k=1500\)
\(\Rightarrow k^2.15=1500\)
\(\Rightarrow k^2=100\)
\(\Rightarrow k=\pm10\)
+) \(k=10\Rightarrow x=50,y=30\)
+) \(k=-10\Rightarrow x=-50;y=-30\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-50;-30\right);\left(50;30\right)\)
b) Hình như sai đề
Vì x, y tỉ lệ nghịch với 3; 5 nên:
3x = 5y => \(\frac{x}{5}=\frac{y}{3}\) Và x . y = 1500
Ta có: \(\frac{x}{5}=\frac{y}{3}\) \(=\frac{x.y}{5.y}=\frac{y}{3}\)
hay \(\frac{x}{5}=\frac{y}{3}=\frac{1500}{5.y}\)
=> \(y.5.y\) = 1500 . 3
\(5.y^2\) = 4500 => \(y^2\) = 900 => y = \(\sqrt{900}\) = 30
y = \(-\sqrt{900}\) = -30
+) Với y = 30 => x . 30 = 1500 => x = \(\frac{1500}{30}\) = 50
+) Với y = -30 => x . (-30) = 1500 => x = \(\frac{1500}{-30}\) = -50
Vậy x = 30 ; y = 50
hoặc x = -30 ; y = -50