2(-3/2)^2-7/2
Giúp mình với ạ mình đag cần gấp a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{7}< \dfrac{x}{35}< \dfrac{2}{5}\)
\(\Rightarrow\dfrac{5}{35}< \dfrac{x}{35}< \dfrac{14}{35}\)
\(\Rightarrow5< x< 14\)
b) \(\dfrac{5}{13}< 2-x< \dfrac{5}{8}\)
\(\Rightarrow2-\dfrac{5}{8}< x< 2-\dfrac{5}{13}\)
\(\Rightarrow\dfrac{11}{8}< x< \dfrac{21}{13}\)
(7/111 - 4/33 + 9/37).(1/2 - 1/3 -1/6)
= (7/111 - 4/33 + 9/37).0
= 0
(7/111 - 4/33 + 9/37).(1/2 - 1/3 - 1/6)
= (7/111 - 4/33 + 9/37).0
= 0
`7/5-1/3:2/4`
`=7/5-1/3xx4/2`
`=7/5-1/3xx2`
`=7/5-2/3`
`=21/15-10/15=11/15`
\(\dfrac{7}{5}-\dfrac{1}{3}:\dfrac{2}{4}=\dfrac{7}{5}-\dfrac{2}{3}=\dfrac{11}{15}\)
\(A=2+2^2+2^3+2^4+...+2^{100}\)
\(=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)
\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)
\(=2+7\cdot\left(2^2+2^5+...+2^{98}\right)\)
=>A không chia hết cho 7 mà là chia 7 dư 2 nha bạn
\(=\dfrac{3}{2}-\dfrac{2}{21}-\dfrac{7}{12}+\left[\dfrac{15}{21}-\dfrac{1}{3}+\dfrac{5}{4}-\dfrac{2}{7}-\dfrac{1}{3}\right]\)
=11/12-2/21+5/7-2/3+5/4-2/7
=11/12-2/3+5/4-2/21+3/7
=11/12-8/12+15/12-2/21+9/21
=18/12+7/21
=3/2+1/3
=9/6+2/6=11/6
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left\{\dfrac{7}{12}-\left[\dfrac{15}{21}-\left(\dfrac{1}{3}-\dfrac{5}{4}\right)-\left(\dfrac{2}{7}+\dfrac{1}{3}\right)\right]\right\}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left\{\dfrac{7}{12}-\left[\dfrac{15}{21}-\left(-\dfrac{11}{12}\right)-\dfrac{13}{21}\right]\right\}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left\{\dfrac{7}{12}-\dfrac{85}{84}\right\}\)
\(B=\dfrac{3}{2}-\dfrac{2}{21}-\left(-\dfrac{3}{7}\right)\)
\(B=\dfrac{11}{6}\)
Q = \(\dfrac{3\sqrt{x}}{x+1}\) (x \(\ge\) 0; x \(\ne\) 4)
Áp dụng BĐT Cô-si cho 2 số không âm x và 1 ta được:
\(\dfrac{x+1}{2}\ge\sqrt{x}\) (1)
\(\Leftrightarrow\) \(\dfrac{3\cdot\dfrac{x+1}{2}}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (x + 1 > 0 với mọi x \(\ge\) 0)
\(\Leftrightarrow\) \(\dfrac{6}{2\left(x+1\right)}\ge\dfrac{3\sqrt{x}}{x+1}\)
\(\Leftrightarrow\) \(\dfrac{3}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (*)
Dấu "=" xảy ra \(\Leftrightarrow\) x = 1 (TM)
Khi đó: \(\dfrac{3\sqrt{x}}{x+1}\le\dfrac{3}{1+1}=\dfrac{3}{2}\)
Vậy QMax = \(\dfrac{3}{2}\) khi và chỉ khi x = 1
Chúc bn học tốt!
2(-3/2)^2-7/2
=(2x-9/4)-7/2
=-9/2-7/2=-16/2=-8