tìm x \(\ge\) 0 biết |x (x-4)|=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2! +2/3! +3/4! +... + 99/100!
= (1/1! -1/2!) + (1/2! - 1/3!) + (1/3! -1/4!) + .... + (1/99! -1/100!)
=1 - 1/100! <1
Nhók Silver Bullet không biết làm thì thôi đừng đăng xàm xàm
Dốt còn tỏ ra ngu học
(x2-1).(x2-4).(x2-9).(x2-10) \(\ge\)0 => cả 4 số (x2-1); (x2-4); (x2-9); (x2-10) đều không âm hoặc không dương hoặc có 2 số không dương và 2 số không âm
Nhận xét: x2-1 > x2-4 > x2-9 > x2-10 ( Vì -1 > -4 > -9 > -10). Do đó:
+) Nếu 4 số cùng không âm thì x2-1 > x2-4 > x2-9 > x2-10 \(\ge\) 0 => x2 \(\ge\) 10 . Vì x nguyên => x = 4; 5 ; 6;....hoặc -4;-5;-6;...
+) Nếu 4 số cùng không dương thì 0 \(\ge\)x2-1 > x2-4 > x2-9 > x2-10 => x2 - 1 \(\le\) 0 => x2 \(\le\) 1 Mà x2 \(\ge\) 0 nên x2 = 1 => x =1 hoặc x = -1
+) Nếu có 2 số không âm và số không dương thì x2-1 > x2-4 \(\ge\) 0 \(\ge\) x2-9 > x2-10
=> x2 \(\ge\) 4 và x2 \(\le\) 9. Vì x nguyên => x2 = 4 hoặc 9 => x = -2; 2; hoặc -3; 3
Vậy với mọi x nguyên đều thỏa mãn y/c
Các bn coi m làm đúng hg nhak
Giải
(x2+1)(x2-10)< 0 khi x2+1 và x2-10 khác dấu
Mà x2+1 > x2-10 nên x2+1> 0 và x2-10<0, ta có
x2+1 > 0 => x2>-1
x2-10 < 0 => x2< 10
=> -1 < x2 < 10
=>x = +-1 hoặc +-2 hoặc +-3
|x| = |-3|
=> |x| = 3
=> x = 3 hoặc x = -3
mà x > 0
nên x = 3
\(\Leftrightarrow\frac{x+y}{4}\ge\frac{xy}{x+y}\)
\(\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Vậy BĐT được chứng minh
Dấu "=" xảy ra khi \(x=y\)
Vì - |2x + 4| ≤ 0 ; - |y + 5| ≤ 0
=> - |2x + 4| - |y + 5| ≤ 0
Mà để - |2x + 4| - |y + 5| ≥ 0 => - |2x + 4| = 0 ; - |y + 5| = 0
=> 2x + 4 = 0 ; y + 5 = 0
=> x = - 2 ; y = - 5
Ta có:\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\ge0\)
\(\Rightarrow\left(x^2-4x+3\right)\left(x+5\right)\ge0\).Ta có 2 trường hợp:
TH1:\(\hept{\begin{cases}x^2-4x+3\ge0\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-4x+4\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\ge1\\x+5\ge0\end{cases}}\).Ta lại có 2 trường hợp:
Với \(\hept{\begin{cases}x-2\ge1\\x+5\ge0\end{cases}}\)\(\Rightarrow x\ge3\)
Với \(\hept{\begin{cases}x-2\le1\\x+5\ge0\end{cases}}\)\(\Rightarrow-5\le x\le3\Rightarrow x\in\left\{-5,-4,-3\right\}\)
TH2:\(\hept{\begin{cases}x^2-4x+3\le0\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x-2\le1\\x+5\le0\end{cases}}\)\(\Rightarrow x\le-5\)
Vậy....................
|x . (x - 4)| = 0
<=> x . (x - 4) = 0
<=> hoặc x = 0 hoặc x - 4 = 0
<=> hoặc x = 0 hoặc x = 4