\(\frac{2010}{2}+\frac{2010}{6}+\frac{2010}{12}+.....+\frac{2010}{9900}\)
TÍNH TỔNG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2010}{2}+\frac{2010}{2}+\frac{2010}{6}+\frac{2010}{12}+...+\frac{2010}{9900}\)
<=>\(A=2010\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
<=>\(A=2010\left(\frac{1}{2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
<=>\(A=2010\left(\frac{1}{2}+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
<=>\(A=2010\left(\frac{1}{2}+1-\frac{1}{100}\right)\)
<=>\(A=2010.\frac{149}{100}\)
<=>\(A=\frac{29949}{10}\)
Nếu như đề của bạn viết bị đúng thì ko sao, nhưng nếu đề bạn có bị thừa phân số 2010/2 thì chỉnh sửa lại bài làm bên trên 1 chút
\(A=\frac{2010}{2}+\frac{2010}{6}+...+\frac{2010}{9900}\)
\(=2010.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{9900}\right)\)
\(=2010.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)\)
\(=2010.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=2010.\left(1-\frac{1}{100}\right)=2010.\frac{99}{100}\)
\(=\frac{19899}{10}\)
\(2009-\frac{2010}{3}-\frac{2010}{6}-\frac{2010}{15}-...-\frac{2010}{45}\)
\(=2009-2010.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{15}+...+\frac{1}{45}\right)\)
\(=2009-2010.\frac{1}{2}.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{90}\right)\)
Có vấn đề chỗ 2010/15 bạn xem lại
\(P=\frac{3^{2010}-6^{2010}+9^{2010}-12^{2010}+15^{2010}-18^{2010}}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)
\(P=\frac{-3^{2010}.\left(-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}\right)}{-1+2^{2010}-3^{2010}+4^{2010}-5^{2010}+6^{2010}}\)
\(P=-3^{2010}\)
dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1))
(2010). ∑(i=1 -> 99) (99/100)
2010 . (99/100) = 1989,9
tick nha
dãy số 2, 6, 12, 20...9900 tách ra thành 1.2, 2.3, 3.4, 4.5,..., 99.100
nghĩa là mình có công thức ∑ (i=1 -> 99) (2010) / (99.(99+1))
(2010). ∑(i=1 -> 99) (99/100)
2010 . (99/100) = 1989,9