So sánh 1006/1007 + 1007/1008 + 1008/1009 và 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 20082 > 20082 -1 = 2007.2009 => 1007/1008<1008/1009
Ta có:\(\frac{1007}{1008}=1-\frac{1}{1008}\)
\(\frac{1008}{1009}=1-\frac{1}{1009}\)
mà \(\frac{1}{1008}>\frac{1}{1009}\)
=> \(1-\frac{1}{1008}< 1-\frac{1}{1009}\)
Hay \(\frac{1007}{1008}< \frac{1008}{1009}\)
Vậy .......
Chúc bạn hk tốt!!! nhớ k cho mình na
1-1/2+1/3-1/4+1/5-1/6+...+1/2011-1/2012 / 1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)
Vậy x=-2015
Ta có: \(\dfrac{x+1006}{1007}+\dfrac{x+1005}{1008}=\dfrac{x+1004}{1009}+\dfrac{x+1003}{1010}\)
\(\Leftrightarrow\dfrac{x+1006}{1007}+1+\dfrac{x+1005}{1008}+1=\dfrac{x+1004}{1009}+1+\dfrac{x+1003}{1010}+1\)
\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}=\dfrac{x+2013}{1009}+\dfrac{x+2013}{1010}\)
\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}-\dfrac{x+2013}{1009}-\dfrac{x+2013}{1010}=0\)
\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\right)=0\)
mà \(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\ne0\)
nên x+2013=0
hay x=-2013
Vậy: S={-2013}
Đặt \(A=\frac{1005}{1006}+\frac{1006}{1007}+\frac{1007}{1008}+\frac{1008}{1005}\) ta có :
\(A=\frac{1006-1}{1006}+\frac{1007-1}{1007}+\frac{1008-1}{1008}+\frac{1005+3}{1005}\)
\(A=\frac{1006}{1006}-\frac{1}{1006}+\frac{1007}{1007}-\frac{1}{1007}+\frac{1008}{1008}-\frac{1}{1008}+\frac{1005}{1005}+\frac{3}{1005}\)
\(A=1-\frac{1}{1006}+1-\frac{1}{1007}+1-\frac{1}{1008}+1+\frac{3}{1005}\)
\(A=\left(1+1+1+1\right)-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{3}{1005}\right)\)
\(A=4-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1005}-\frac{1}{1005}-\frac{1}{1005}\right)\)
\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]\)
Mà :
\(\frac{1}{1006}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1006}-\frac{1}{1005}< 0\) \(\left(1\right)\)
\(\frac{1}{1007}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1007}-\frac{1}{1005}< 0\) \(\left(2\right)\)
\(\frac{1}{1008}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1008}-\frac{1}{1005}< 0\) \(\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)< 0\)
\(\Rightarrow\)\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]>4\)
\(\Rightarrow\)\(A>4\) ( điều phải chứng minh )
Vậy \(A>4\)
Chúc bạn học tốt ~
Trung bình cộng của các số tự nhiên liên tiếp từ 1 ; 2 ; 3 ; 4 ; 5 ; …2013 là số nào ?
a.1007 b.1008 c.1009 d.1006
A. 1007 nhà bạn nhé !!!
C = 1.2.3.4....2011
D = 1007/2 . 1008/2 . 1009/2.....2012/2
D = (1007.1008.1009.....2012) : (2.2.2.2........2) (có 2012 - 1007 + 1 = 1006 số 2 )
D = (1007.1008.1009....503 .2.2) : 21004
MÀ (4.503.1007.1008.....2011) < (1.2.3.....2011)
Vậy c > D
Ta có : \(\left\{{}\begin{matrix}\dfrac{1006}{1007}< 1\\\dfrac{1007}{1008}< 1\\\dfrac{1008}{1009}< 1\end{matrix}\right.\)
Cộng vế theo vế của 3 bất đẳng thức trên , ta có :
\(\dfrac{1006}{1007}+\dfrac{1007}{1008}+\dfrac{1008}{1009}< 1+1+1=3\)
Ta có : \(\dfrac{1006}{1007}< 1,\dfrac{1007}{1008}< 1,\dfrac{1008}{1009}< 1\)
\(\Rightarrow\dfrac{1006}{1007}+\dfrac{1007}{1008}+\dfrac{1008}{1009}< 1+1+1=3\)
Do đó \(\dfrac{1006}{1007}+\dfrac{1007}{1008}+\dfrac{1008}{1009}< 3\)