K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2022

Ta có : \(\left\{{}\begin{matrix}\dfrac{1006}{1007}< 1\\\dfrac{1007}{1008}< 1\\\dfrac{1008}{1009}< 1\end{matrix}\right.\)

Cộng vế theo vế của 3 bất đẳng thức trên , ta có : 

\(\dfrac{1006}{1007}+\dfrac{1007}{1008}+\dfrac{1008}{1009}< 1+1+1=3\)

2 tháng 8 2022

Ta có : \(\dfrac{1006}{1007}< 1,\dfrac{1007}{1008}< 1,\dfrac{1008}{1009}< 1\)

\(\Rightarrow\dfrac{1006}{1007}+\dfrac{1007}{1008}+\dfrac{1008}{1009}< 1+1+1=3\)

Do đó \(\dfrac{1006}{1007}+\dfrac{1007}{1008}+\dfrac{1008}{1009}< 3\)

Ta có: 20082 > 2008-1 = 2007.2009 => 1007/1008<1008/1009

5 tháng 6 2018

Ta có:\(\frac{1007}{1008}=1-\frac{1}{1008}\)

\(\frac{1008}{1009}=1-\frac{1}{1009}\)

mà \(\frac{1}{1008}>\frac{1}{1009}\)

=> \(1-\frac{1}{1008}< 1-\frac{1}{1009}\)

Hay  \(\frac{1007}{1008}< \frac{1008}{1009}\)

Vậy .......

Chúc bạn hk tốt!!! nhớ k cho mình na

20 tháng 7 2017

\(\dfrac{x+1}{2014}+\dfrac{x+2}{2013}+.....+\dfrac{x+1007}{1008}=\dfrac{x+1008}{1007}+\dfrac{x+1009}{1006}+........+\dfrac{x+2014}{1}\)\(\Leftrightarrow\left(\dfrac{x+1}{2014}+1\right)+\left(\dfrac{x+2}{2013}+1\right)+...+\left(\dfrac{x+1007}{1008}+1\right)=\left(\dfrac{x+1008}{1007}+1\right)+\left(\dfrac{x+1009}{1006}+1\right)+...+\left(\dfrac{x+2014}{1}+1\right)\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+1007}{1008}=\dfrac{x+2015}{1007}+\dfrac{x+1009}{1006}+...+\dfrac{x+2014}{1}\)\(\Leftrightarrow\dfrac{x+2015}{2014}+\dfrac{x+2015}{2013}+...+\dfrac{x+2015}{1008}-\dfrac{x+1008}{1007}-\dfrac{x+2015}{1006}-...-\dfrac{x+2015}{1}=0\)\(\Leftrightarrow\left(x+2015\right)\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1\right)=0\)\(\Leftrightarrow x+2015=0\left(\dfrac{1}{2014}+\dfrac{1}{2013}+...+\dfrac{1}{1008}-\dfrac{1}{1007}-\dfrac{1}{1006}-...-1>0\right)\)\(\Leftrightarrow x=-2015\)

Vậy x=-2015

Ta có: \(\dfrac{x+1006}{1007}+\dfrac{x+1005}{1008}=\dfrac{x+1004}{1009}+\dfrac{x+1003}{1010}\)

\(\Leftrightarrow\dfrac{x+1006}{1007}+1+\dfrac{x+1005}{1008}+1=\dfrac{x+1004}{1009}+1+\dfrac{x+1003}{1010}+1\)

\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}=\dfrac{x+2013}{1009}+\dfrac{x+2013}{1010}\)

\(\Leftrightarrow\dfrac{x+2013}{1007}+\dfrac{x+2013}{1008}-\dfrac{x+2013}{1009}-\dfrac{x+2013}{1010}=0\)

\(\Leftrightarrow\left(x+2013\right)\left(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\right)=0\)

mà \(\dfrac{1}{1007}+\dfrac{1}{1008}-\dfrac{1}{1009}-\dfrac{1}{1010}\ne0\)

nên x+2013=0

hay x=-2013

Vậy: S={-2013}

1 tháng 4 2018

Viết thiếu đầu bài rồi bạn ơi !

26 tháng 4 2018

Đặt \(A=\frac{1005}{1006}+\frac{1006}{1007}+\frac{1007}{1008}+\frac{1008}{1005}\) ta có : 

\(A=\frac{1006-1}{1006}+\frac{1007-1}{1007}+\frac{1008-1}{1008}+\frac{1005+3}{1005}\)

\(A=\frac{1006}{1006}-\frac{1}{1006}+\frac{1007}{1007}-\frac{1}{1007}+\frac{1008}{1008}-\frac{1}{1008}+\frac{1005}{1005}+\frac{3}{1005}\)

\(A=1-\frac{1}{1006}+1-\frac{1}{1007}+1-\frac{1}{1008}+1+\frac{3}{1005}\)

\(A=\left(1+1+1+1\right)-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{3}{1005}\right)\)

\(A=4-\left(\frac{1}{1006}+\frac{1}{1007}+\frac{1}{1008}-\frac{1}{1005}-\frac{1}{1005}-\frac{1}{1005}\right)\)

\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]\)

Mà : 

\(\frac{1}{1006}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1006}-\frac{1}{1005}< 0\) \(\left(1\right)\)

\(\frac{1}{1007}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1007}-\frac{1}{1005}< 0\) \(\left(2\right)\)

\(\frac{1}{1008}< \frac{1}{1005}\)\(\Rightarrow\)\(\frac{1}{1008}-\frac{1}{1005}< 0\) \(\left(3\right)\)

Từ (1), (2) và (3) suy ra : 

\(\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)< 0\)

\(\Rightarrow\)\(A=4-\left[\left(\frac{1}{1006}-\frac{1}{1005}\right)+\left(\frac{1}{1007}-\frac{1}{1005}\right)+\left(\frac{1}{1008}-\frac{1}{1005}\right)\right]>4\)

\(\Rightarrow\)\(A>4\) ( điều phải chứng minh ) 

Vậy \(A>4\)

Chúc bạn học tốt ~ 

30 tháng 3 2016

Trung bình cộng của các số tự nhiên liên tiếp từ 1 ; 2 ; 3 ; 4 ; 5 ; …2013 là số nào ?

a.1007    b.1008     c.1009  d.1006

A. 1007 nhà bạn nhé !!!

30 tháng 3 2016

(2013+1):2=1007

đáp án A

19 tháng 8 2015

C = 1.2.3.4....2011

D = 1007/2 . 1008/2 . 1009/2.....2012/2

D = (1007.1008.1009.....2012) : (2.2.2.2........2) (có 2012 - 1007 + 1 = 1006 số 2 )

D = (1007.1008.1009....503 .2.2) : 21004

MÀ (4.503.1007.1008.....2011) < (1.2.3.....2011)

Vậy c > D