-2xy^2+2x^2y^4+1 viết biểu thức sau dưới dạng 1 tổng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2+2xy-2y+2\)
\(=\left(\frac{x^2}{2}+2xy+2y^2\right)+\left(\frac{x^2}{2}-2x+2\right)\)
\(=\left(\frac{x}{\sqrt{2}}+\sqrt{2}y\right)^2+\left(\frac{x}{\sqrt{2}}-\sqrt{2}\right)^2\)
\(A=x^2+2y^2+2xy-2x+2\)
\(2A=2x^2+4y^2+4xy-4x+4\)
\(2A=x^2+4xy+4y^2+x^2-4x+4\)
\(2A=\left(x+2y\right)^2+\left(x-2\right)^2\)
\(A=\frac{\left(x+2y\right)^2+\left(x-2\right)^2}{2}\)
a) \(x^2-4x+5+y^2+2y=\left(x^2-4x+4\right)+\left(y^2+2y+1\right)\)
\(=\left(x-2\right)^2+\left(y+1\right)^2\)
b) \(2x^2+y^2-2xy+10x+25=\left(x^2+10x+25\right)+\left(x^2-2xy+y^2\right)\)
\(=\left(x+5\right)^2+\left(x-y\right)^2\)
c) \(2x^2+2y^2=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)=\left(x-y\right)^2+\left(x+y\right)^2\)
1)a)x2+10x+26+y2+2y
=(x2+10x+25)+(y2+2y+1)
=(x+5)2+(y+1)2
b)x2-2xy+2y2+2y+1
=(x2-2xy+y2)+(y2+2y+1)
=(x-y)2+(y+1)2
c)z2-6z+13+t2+4t
=(z2-6z+9)+(t2+4t+4)
=(z-3)2+(t+2)2
d)4x2+2z2-4xz-2z+1
=(4x2-4xz+z2)+(z2-2z+1)
=(2x-z)2+(z-1)2
2)a)(x-3)2-4=0
<=>(x-3-2)(x-3+2)=0
<=>(x-5)(x-1)=0
<=>x-5=0 hoặc x-1=0
<=>x=5 hoặc x=1
b)x2-2x=24
<=>x2-2x-24=0
<=>(x2-6x)+(4x-24)=0
<=>x(x-6)+4(x-6)=0
<=>(x-6)(x+4)=0
<=>x-6=0 hoặc x+4=0
<=>x=6 hoặc x=-4
a) x^2 + 10x + 26 + y^2 + 2y
=x2+10x+25+y2+2y+1
=x2+2.x.5+52+y2+2.y.1+12
=(x+5)2+(y+1)2
b)x^2 - 2xy + 2y^2 + 2y +1
=x2-2xy+y2+y2+2y+1
=(x-y)2+(y+1)2
c)z^2 - 6z + 13 + t^2 + 4t
=z2-6z+9+t2+4z+4
=z2-2.z.3+32+t2+2.t.2+22
=(z-3)2+(t+2)2
d)4x^2 + 2z^2 - 4xz - 2z + 1
=4x2-4xz+z2+z2-2z+1
=(2x)2-2.2x.z+z2+z2-2z.1+12
=(2x-z)2+(z-1)2
\(2xy^2+x^2y^4+1\)
\(=\left(xy^2\right)^2+2.xy^2+1^2\)
\(=\left(xy^2+1\right)^2\)
a) 2x2 + y2 - 2xy + 10x + 25
= (x2 + y2 - 2xy) + (x2 + 10x + 25)
= (x - y)2 + (x + 5)2
các bn xem đúng ko nhé mk làm bừa nên lên olm hỏi lại mọi người giúp giùm câu b) nha!!
5747568568769868986997696976968978907890780
bình phương tổng chứ
b, B= x^2+ 2xy+y^2 +4y+4
= x^2+2xy+y^2+y^2+4y+4
=(x+y)^2+(y+2)^2
c, C= 2x^2+6xy+9y^2+2x+1
= x^2+6xy+9y^2+x^2+2x+1
= (x+3)^2+(x+1)^2
d, D= x(x+2) +(x+1)(x+3) +2
= x^2+2x+x^2+3x+x+3+2
= x^2+2x+1+x^2+4x+4
= (x+1)^2+(x+2)^2
e, E= x^2-2xy+2y^2+2y+1
= x^2-2xy+y^2+y^2+2y+1
= (x-y)^2+(y+1)^2
f, F= 4x^2-12xy+10y^2+4y+4
=4x^2-12xy+9y^2+y^2+4y+4
=(2x-3y)^2+(y+2)^2
g, G=2x^2+4xy+4y^2+4x+4
=x^2+4xy+4y^2+x^2+4x+4
=(x+2y)^2+(x+2)^2
Xong r.... dài quá...mới hè lớp 7 nên có j bỏ qua ak
Ta có:
\(-2xy^2+2x^2y^4+1\)
\(=\left(xy^2\right)^2-2xy^2+1+x^2y^4\)
\(=\left(xy^2-1\right)^2+\left(xy^2\right)^2\)
Chắc là vầy nhỉ