K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
2 tháng 8 2022

\(x^2+3x+7=x^2+2.x.\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2+\dfrac{19}{4}\\ =\left(x+\dfrac{3}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu ''='' xảy ra `<=>x=-3/2`

Vậy GTNN là : `19/4<=>x=-3/2`

20 tháng 7 2019

Câu a sai đề nên mik sửa lại nha

a) \(A=2019-\left(3x+8\right)^2\)

Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)

Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)

Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)

b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)

Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)

Vậy ... 

b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)

Vậy ...

\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)

Dấu "=" xảy ra  khi \(2x+1=15=>x=7\)

Vậy ...

\(a,A=2019-\left(3x+8\right)\)

GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)

\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)

GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)

\(a,A=\left(6x-1\right)^2+2018\ge2018\)

Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)

Vậy GTNN của A là 2018 khi x = 1/6

B ko hiểu 

18 tháng 6 2018

Giải:

a) \(D=-4x^2-3x+2\)

\(\Leftrightarrow D=-4x^2-3x-\dfrac{9}{16}+\dfrac{41}{16}\)

\(\Leftrightarrow D=\dfrac{41}{16}-\left(4x^2+3x+\dfrac{9}{16}\right)\)

\(\Leftrightarrow D=\dfrac{41}{16}-\left(2x+\dfrac{3}{4}\right)^2\le\dfrac{41}{16}\)

\(\Leftrightarrow D_{Max}=\dfrac{41}{16}\)

b) \(A=x^2+x+1\)

\(\Leftrightarrow A=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(\Leftrightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Leftrightarrow A_{Min}=\dfrac{3}{4}\)

c) \(B=4x^2-3x+2\)

\(\Leftrightarrow B=4x^2-3x+\dfrac{9}{16}+\dfrac{41}{16}\)

\(\Leftrightarrow B=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{41}{16}\ge\dfrac{41}{16}\)

\(\Leftrightarrow B_{Min}=\dfrac{41}{16}\)

Vậy ...

18 tháng 6 2018

sao ra 9/16

21 tháng 11 2017

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

21 tháng 11 2017

tiếp đi bạn 

25 tháng 6 2021

`A=x^2-2x+5`

`=x^2-2x+1+4`

`=(x-1)^2+4>=4`

Dấu "=" `<=>x=1`

`B=4x^2+4x+3`

`=4x^2+4x+1+2`

`=(2x+1)^2+2>=2`

Dấu "=" xảy ra khi `x=-1/2`

`C=9x^2-6x+7`

`=9x^2-6x+1+6`

`=(3x-1)^2+6>=6`

Dấu '=' xảy ra khi `x=1/3`

`D=5x^2+3x+8`

`=5(x^2+3/5x)+8`

`=5(x^2+3/5x+9/100-9/100)+8`

`=5(x+3/10)^2+151/20>=151/20`

Dấu "=" xảy ra khi `x=-3/10`

25 tháng 6 2021

\(A=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\)

Ta có: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\Rightarrow A_{min}=4\) khi \(x=1\)

\(B=4x^2+4x+3=4x^2+4x+1+2=\left(2x+1\right)^2+2\)

Ta có: \(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+2\ge2\Rightarrow B_{min}=2\) khi \(x=-\dfrac{1}{2}\)

\(C=9x^2-6x+7=9x^2-6x+1+6=\left(3x-1\right)^2+6\)

Ta có: \(\left(3x-1\right)^2\ge0\Rightarrow\left(3x-1\right)^2+6\ge6\Rightarrow C_{min}=6\) khi \(x=\dfrac{1}{3}\)

\(D=5x^2+3x+8\Rightarrow5\left(x^2+2.x.\dfrac{3}{10}+\dfrac{9}{100}\right)+\dfrac{151}{20}=5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\)

Ta có: \(5\left(x+\dfrac{3}{10}\right)^2\ge0\Rightarrow5\left(x+\dfrac{3}{10}\right)^2+\dfrac{151}{20}\ge\dfrac{151}{20}\)

\(\Rightarrow D_{min}=\dfrac{151}{20}\) khi \(x=-\dfrac{3}{10}\)