K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2020

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Ta có:

\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
14 tháng 7 2021

`1)(a+b+c)^2=3(a^2+b^2+c^2)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3a^2+3b^2+3c^2`

`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`

Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`

`2)(a+b+c)^2=3(ab+bc+ca)`

`<=>a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca`

`<=>a^2+b^2+c^2=ab+bc+ca`

`<=>2ab+2bc+2ca=2a^2+2b^2+2c^2`

`<=>a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0`

`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`

Mà `(a-b)^2+(b-c)^2+(c-a)^2>=0`

Vậy dấu "=" xảy ra chỉ có thể là `a=b=c`

Vậy nếu `a=b=c` thì ....