Tìm tất cả các số nguyên \(x\) sao cho \(A=\dfrac{x^3-x^2-x+8}{x^2-3}\) là một số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
Giả sử \(x^3+x^2+2025\) là số chính phương nhỏ hơn 10000. Ta có phương trình:
\(x^3+x^2+2025 =k^2(k \in N,k^2<10000 \Leftrightarrow
k<100)\)
\(\Leftrightarrow
\)\(2025=k^2-x^2(x+1)\)
\(\Leftrightarrow
\)\(2025=(k-x\sqrt{x+1})(k+x\sqrt{x+1})\)
Mà \(k-x\sqrt{x+1} < k+x\sqrt{x+1}< 100\)(Vì \(k < 100\))
\(\Rightarrow \)\(\left[\begin{array}{}
\begin{cases}
k+x\sqrt{x+1}=81\\
k-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
k+x\sqrt{x+1}=75\\
k-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
2k=106\\
k-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
2k=102\\
k-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
53-x\sqrt{x+1}=25
\end{cases}\\
\begin{cases}
k=51\\
51-x\sqrt{x+1}=27
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x\sqrt{x+1}=28
\end{cases}\\
\begin{cases}
k=51\\
x\sqrt{x+1}=24
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x^3+x^2-784=0
\end{cases}\\
\begin{cases}
k=51\\
x^3+x^2-576=0
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\left[\begin{array}{}
\begin{cases}
k=53\\
x^3+x^2-784=0(PTVN)
\end{cases}\\
\begin{cases}
k=51\\
x^3-8x^2+9x^2-72x+72x-576=0
\end{cases}\\
\end{array} \right.\)
\(\Leftrightarrow\)\(\begin{cases}
k=51\\
(x-8)(x^2+9x+72)=0
\end{cases}\)
\(\Leftrightarrow\)\(\begin{cases}
k=51(t/m)\\
\left[\begin{array}{}
x=8(t/m)\\
(x+\frac{9}{2})^2+\frac{207}{4}=0(PTVN)
\end{array} \right.
\end{cases}\)
Vậy chỉ có giá trị \(x=8\) thỏa mãn yêu cầu bài toán.
P/s: Cái c/m vô nghiệm kia mình không biết làm. Chỉ biết bấm máy tính không ra nghiệm nguyên
ĐKXĐ : \(x\ne2\)
Ta có HĐT sau (a - b)(a + b) = a2 - ab + ab - b2 = a2 - b2
Áp dụng vào bài toán ta có:
x4 + 3 = (x4 - 16) + 19
= [(x2)2 - 42] + 19
= (x2 - 4)(x2 + 4) + 19
= (x - 2)(x + 2)(x2 + 4) + 19
Từ đó \(A=\dfrac{x^2+3}{x-2}=\dfrac{\left(x-2\right).\left(x+2\right).\left(x^2+4\right)+19}{x-2}\)
\(=\left(x+2\right).\left(x^2+4\right)+\dfrac{19}{x-2}\)
Do \(x\inℤ\) nên \(A\inℤ\Leftrightarrow19⋮x-2\)
\(\Leftrightarrow x-2\inƯ\left(19\right)=\left\{1;-1;19;-19\right\}\)
hay \(x\in\left\{3;1;21;-17\right\}\)
Bài 1
a) (x + 3)(x + 2) = 0
x + 3 = 0 hoặc x + 2 = 0
*) x + 3 = 0
x = 0 - 3
x = -3 (nhận)
*) x + 2 = 0
x = 0 - 2
x = -2 (nhận)
Vậy x = -3; x = -2
b) (7 - x)³ = -8
(7 - x)³ = (-2)³
7 - x = -2
x = 7 + 2
x = 9 (nhận)
Vậy x = 9
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$
1: Ta có: \(A=\left(\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\dfrac{\sqrt{x}-2}{x-1}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\left(\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right):\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x-\sqrt{x}+2\sqrt{x}-2-\left(x+\sqrt{x}-2\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}\left(x-1\right)}\)
\(=\dfrac{2}{x-1}\)
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Để A là số nguyên thì \(2⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)
Vậy: Để A là số nguyên thì \(x\in\left\{2;3\right\}\)
\(A=\dfrac{x^3-x^2-x+8}{x^2-3}=\dfrac{x^3-3x-x^2+3+2x+5}{x^2-3}=\dfrac{\left(x^2-3\right)\left(x-1\right)+2x+5}{x^2-3}=x-1+\dfrac{2x+5}{x^2-3}\)
\(A\) nguyên mà \(x\) nguyên nên \(\dfrac{2x+5}{x^2-3}\) nguyên.
suy ra \(\dfrac{\left(2x+5\right)\left(2x-5\right)}{x^2-3}=\dfrac{4x^2-25}{x^2-3}=\dfrac{4x^2-12-13}{x^2-3}=4-\dfrac{13}{x^2-3}\) nguyên
mà \(x\) nguyên nên \(x^2-3\inƯ\left(13\right)\Rightarrow x\in\left\{\pm1;\pm4\right\}\)
Thử lại có \(x=4\) thỏa mãn.