Cho A = 31 + 32 + 33 +...+ 32010
a, Thu gọn A
b, Tìm x để 2A + 3 = 3x
Ai giúp e vs!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Ta có:3A=32+33+................+32011
\(\Rightarrow3A-A=\left(3^2+3^3+.....+3^{2011}\right)-\left(3+3^2+.....+3^{2010}\right)\)
\(\Rightarrow2A=3^{2011}-3\)
\(\Rightarrow A=\frac{3^{2011}-3}{2}\)
b,Ta có:\(2A=3^{2011}-3\Rightarrow2A+3=3^{2011}\Rightarrow x=2011\)
\(A=3+3^2+3^3+...+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+...+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+...+3^{2016}\right)-\left(3+3^2+3^3+...+3^{2015}\right)\)
\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+...+\left(3^{2016}-3\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\dfrac{3^{2016}-3}{2}\)
Ta có: \(2A+3=3^n\)
\(\Rightarrow2\cdot\dfrac{3^{2016}-3}{2}+3=3^n\)
\(\Rightarrow3^{2016}-3+3=3^n\)
\(\Rightarrow3^{2016}=3^n\)
\(\Rightarrow n=2016\)
-Ta có:1+2+3+.........+2006=(2006+1).2006:2=2013021
A=31+
a: Tổng các số hạng là:
\(\dfrac{\left(220+1\right)\cdot220}{2}=24310\)
Ta có: A+1=2x
\(\Leftrightarrow2x=24311\)
hay \(x=\dfrac{24311}{2}\)
\(E=\left(1^2+2^2+...+2021^2\right)\left(93-93\right)=0\)
\(a,A=3+3^2+3^3+3^4+...+3^{100}\\ 3A=3^2+3^3+3^4+3^5+3^{101}\\ 3A-A=2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}=3^{4.25+1}\\ \Rightarrow n=25\)
3A=3^2+3^3+...+3^2007
=>3a-A=(3^2+3^3+...+3^2007)-(3^1+3^2+...+3^2006)
=>2A=3^2007-3^1=3^2007-3
=>2A+3=3^2007-3+3=3^2007=3^x
=>x=2007
a) \(A=3^1+3^2+3^3+...+3^{2010}\)
\(3A=3.\left(3^1+3^2+3^3+...+3^{2010}\right)\)
\(3A=3.3^1+3.3^2+3.3^3+...+3.3^{2010}\)
\(3A=3^2+3^3+3^4+...+3^{2011}\)
\(3A-A=2A\)
\(2A=\left(3^2+3^3+3^4+...+3^{2011}\right)-\left(3^1+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3^1=3^{2011}-3\)\(\Rightarrow\)\(A=\left(3^{2011}-3\right)\div2\)
b) Mình ko biết