K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
29 tháng 7 2022

\(cos\widehat{K}=\dfrac{HK}{KI}=\dfrac{19}{25}\Rightarrow\widehat{K}=arccos\dfrac{19}{25}\)

\(DI=\sqrt{KI^2-HK^2}=\sqrt{25^2-19^2}=2\sqrt{66}\left(cm\right)\)

\(\dfrac{1}{DH^2}=\dfrac{1}{HI^2}+\dfrac{1}{HK^2}=\dfrac{1}{264}+\dfrac{1}{361}=\dfrac{625}{95304}\)

\(\Rightarrow DH=\sqrt{\dfrac{95304}{625}}\left(cm\right)\)

Xét tam giác \(DHI\) vuông tại \(D\) đường cao \(DF\)

\(DH^2=HF.HI\) (hệ thức trong tam giác vuông) 

Xét tam giác \(DHK\) vuông tại \(D\) đường cao \(DE\):

\(DH^2=HE.HF\) (hệ thức trong tam giác vuông) 

suy ra \(HE.HK=HF.HI\).

23 tháng 10 2023

ΔKHD vuông tại K có KM là đường cao

nên \(HM\cdot HD=HK^2\)

=>\(HM=\dfrac{HK^2}{HD}\)

Xét ΔKHF vuông tại K có KN là đường cao

nên \(HN\cdot HF=HK^2\)

=>\(HN=\dfrac{HK^2}{HF}\)

Xét ΔHDF vuông tại H có HK là đường cao

nên HK*DF=HD*HF

=>\(DF=\dfrac{HD\cdot HF}{HK}\)

\(HM\cdot HN\cdot DF\)

\(=\dfrac{HK^2}{HD}\cdot\dfrac{HK^2}{HF}\cdot DF\)

\(=\dfrac{HK^4}{HK}=HK^3\)

=>\(HM\cdot HN=\dfrac{HK^3}{DF}\)

=>\(S_{HMKN}=\dfrac{HK^3}{DF}\)

1 tháng 10 2021

...............................................................................

..........................................................................................

...........................................................................tgbvn JGKGITJNNFJFJNFJBFÒNBFOHRJ;FFJh' IIIor   ỉie

18 tháng 6 2016

Trong tam giác ABH : 

góc IAH = góc IHB (cùng phụ góc AHI)

Trong tam giác ACH :

góc CAH = góc CHK (cùng phụ góc AHK)

cộng vế với vế :

IAH +CAH = IHB +CHK

90             = IHB + CHK

Suy ra 180 - IHB - CHK = IHK

           180-90             = IHK

               90 = HIK

HI _l_ HK

Tứ giác AIHK có 4 góc vuôn nên AIHK là Hình chữ nhật 

=> IA = HK và IK =AH 

22 tháng 9 2017

Mk chưa học dạng này vì mk mới học lớp 6 mà mấy bạn giúp mk tăng điểm hỏi đáp nha

22 tháng 9 2017

D H K A M N C

Tam giác DHK vuông => \(DK=\sqrt{HK^2-DH^2}=\sqrt{10^2-6^2}=8\)

\(HK.DA=DH.DK\) ( cùng bằng 2 lần diện tích tam giác DHK)

=> \(DA=\frac{DH.DK}{HK}=\frac{6.8}{10}=4,8\)

AMDN là hình chữ nhật (vì tứ giác có các góc đều vuông)

=> \(AC=\frac{1}{2}DA=2,4\)

16 tháng 12 2020

a) Ta có: \(AE=EB=\dfrac{AB}{2}\)(E là trung điểm của AB)

\(CF=FD=\dfrac{CD}{2}\)(F là trung điểm của CD)

mà AB=CD(Hai cạnh đối của hình bình hành ABCD)

nên AE=CF=FD=EB

Xét tứ giác AECF có 

AE//CF(AB//CD, E∈AB, F∈CD)

AE=CF(cmt)

Do đó: AECF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét tứ giác AEFD có 

AE//FD(AB//CD, E∈AB, F∈CD)

AE=FD(cmt)

Do đó: AEFD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: AF//CE(Hai cạnh đối trong hình bình hành AECF)

mà H∈AF(gt)

và K∈CE(gt)

nên HF//KC và EK//AH

Xét ΔDKC có 

F là trung điểm của CD(gt)

FH//DK(cmt)

Do đó: H là trung điểm của DK(Định lí 1 về đường trung bình của tam giác)

⇒DH=KH(1)

Xét ΔABH có 

E là trung điểm của AB(gt)

EK//BH(cmt)

Do đó: K là trung điểm của BH(Định lí 1 về đường trung bình của tam giác)

⇒BK=KH(2)

Từ (1) và (2) suy ra DH=HK=KB(đpcm)