K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
29 tháng 7 2022

\(ĐK:x>0\)

\(E=\dfrac{1-\sqrt{x}+x}{\sqrt{x}}=\sqrt{x}-1+\dfrac{1}{\sqrt{x}}>=2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}-1=2\sqrt{1}-1=1\)

\(E>=1=>\sqrt{E}>=1;\sqrt{E}-1>=0\)

\(E-\sqrt{E}=\sqrt{E}\left(\sqrt{E}-1\right)>=0\\ =>E>=\sqrt{E}\)

23 tháng 8 2018
Giúp mình nha mn cảm ơn nhiều ạ
17 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{3}{\sqrt[]{x}-1}\left(x>1\right)\)

\(P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\)

Áp dụng bất đẳng thức Cauchy cho 2 số \(\sqrt[]{x}-1;\dfrac{3}{\sqrt[]{x}-1}\) ta được :

\(\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{\sqrt[]{x}-1.\dfrac{3}{\sqrt[]{x}-1}}\)

\(\Rightarrow\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}\ge2\sqrt[]{3}\)

\(\Rightarrow P=\sqrt[]{x}-1+\dfrac{3}{\sqrt[]{x}-1}+1\ge2\sqrt[]{3}+1\)

\(\Rightarrow Min\left(P\right)=2\sqrt[]{3}+1\)

17 tháng 7 2023

sorry mn cho e sửa lại đề ạ

tìm gtln của p ạ

 

19 tháng 2 2021

Tham khảo thanh này để soạn đề chính xác hơn nha :vvv

a) Ta có: \(M=\left(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\right)\cdot\dfrac{x+3\sqrt{x}}{7-\sqrt{x}}\)

\(=\left(\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-\left(x-2\sqrt{x}+\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{7-\sqrt{x}}\)

\(=\dfrac{x-9-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)}\cdot\dfrac{1}{-\left(\sqrt{x}-7\right)}\)

\(=\dfrac{\sqrt{x}-7}{\sqrt{x}-2}\cdot\dfrac{-1}{\sqrt{x}-7}\)

\(=\dfrac{-1}{\sqrt{x}-2}\)(1)

b) Ta có: \(x^2-4x=0\)

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=4\left(loại\right)\end{matrix}\right.\)

Thay x=0 vào biểu thức (1), ta được:

\(M=\dfrac{-1}{\sqrt{0}-2}=\dfrac{-1}{-2}=\dfrac{1}{2}\)

Vậy: Khi \(x^2-4x=0\) thì \(M=\dfrac{1}{2}\)

16 tháng 7 2023

ĐKXĐ : \(x>0\)

Áp dụng bất đẳng thức Cauchy cho 2 số dương \(\sqrt{x};\dfrac{4}{\sqrt{x}}\) ta có 

\(P=\sqrt{x}+\dfrac{4}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{4}{\sqrt{x}}}=4\)

Dấu "=" xảy ra khi \(\sqrt{x}=\dfrac{4}{\sqrt{x}}\Leftrightarrow x=4\)

16 tháng 7 2023

\(P=\sqrt[]{x}+\dfrac{4}{\sqrt[]{x}}\left(x>0\right)\)

\(P=\dfrac{x+4}{\sqrt[]{x}}=\dfrac{x+4}{\sqrt[]{x}}\)

Vì \(x>0;x+4>4\)

\(\Rightarrow P=\dfrac{x+4}{\sqrt[]{x}}>4\)

⇒ Không có giá trị nhỏ nhất

e: ĐKXĐ: \(x\ge\dfrac{5}{2}\)

g: ĐKXĐ: \(x\le-4\)

27 tháng 10 2023

ĐKXĐ: x>=0

a: P=1/2

=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}+5}=\dfrac{1}{2}\)

=>\(2\sqrt{x}+4=\sqrt{x}+5\)

=>\(\sqrt{x}=1\)

=>x=1(nhận)

b: \(P^2-P=P\left(P-1\right)\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}+5}\cdot\dfrac{\sqrt{x}+2-\sqrt{x}-5}{\sqrt{x}+5}\)

\(=\dfrac{-3\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+5\right)^2}< 0\)

=>\(P^2< P\)

c: Để P nguyên thì \(\sqrt{x}+2⋮\sqrt{x}+5\)

=>\(\sqrt{x}+5-3⋮\sqrt{x}+5\)

=>\(\sqrt{x}+5\inƯ\left(-3\right)\)

=>\(\sqrt{x}+5\in\left\{1;-1;3;-3\right\}\)

=>\(\sqrt{x}\in\left\{-4;-6;-2;-8\right\}\)

=>\(x\in\varnothing\)

18 tháng 9 2016

jkuhkuhikjhkjhkuhjkgh

26 tháng 11 2021
Âm 1/2 mũ 3 nhaan21/3 nhân âm 2 mũ 3 trừ âm 1)3