cho x và y là các số tự nhiên sao cho 2x + 3y + 15 chia hết cho 17. Chứng tỏ rằng 19x + 3y + 32 cũng chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x+3y+15 chia hết cho 17 (theo đề bài)
Suy ra 2x+3y+15+17x+17 chia hết cho 17
Vậy 2x+17x+3y+15+17 =19x+3y+32 chia hết cho 17( điều phải chứng minh)
Ta có:
19x+3y+32=2x+17x+3y+15+17=(2x+3y+15)+(17x+17)=(2x+3y+15)+17.(x+1)
Nhận thấy: 2x+3y+15 chia hết cho 17 (gt)
Mà 17(x+1) chia hết cho 17 với mọi x
=> Nếu 2x+3y+15 chia hết cho 17 thì 19x+3y+32 cũng chia hết cho 17
Cho các số tự nhiên x,y biết: 2x + 3y + 15 : 17. Hỏi 19x + 3y + 32 có chia hết cho 17 không? Vì sao?
Ta phải chứng minh, 2 . x + 3 . y chia hết cho 17, thfi 9 . x + 5 . y chai hết cho 17
Ta có: 4( 2x + 3y ) + ( 9x + 5y ) = 17x + 17y chia hết cho 17
Do vậy; 2x + 3y chia hết cho 17, 4( 2x + 3y ) chia hết cho 17; 9x + 5y chia hết cho 17
Ngược lại; ta có: 4( 2x + 3y ) chia hết cho 17 mà ( 4;17 ) = 1
\(\Rightarrow\)2x + 3y chia hết cho 17
Đặt A = 2x + 3y , B = 9x + 5y
Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)
= (18x + 27y) - (18x + 10y)
= 18x + 27y - 18x - 10y
= 17y
Do A chia hết cho 17 => 9A chia hết cho 17
Mà 17y chia hết cho 17 => 2B chia hết cho 17
Mà (2,17)=1 => B chia hết cho 17
Chứng tỏ 2x+3y chia hết cho 9x=5y khi và chỉ khi 9x+5y chia hết cho 17
HELP ME ! PLEASE
tìm mãi