Tìm các nghiệm nguyên (x,y) của phương trình: 54x3+1=y3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải như sau:
Đặt a=2x3a=2x3 khi ấy 27a+1=y3,a=2x3⇒a(27a+1)=2(xy)3=2t327a+1=y3,a=2x3⇒a(27a+1)=2(xy)3=2t3
Suy ra 2a(54a+2)=(2t)3=k32a(54a+2)=(2t)3=k3 suy ra u(27u+2)=k3⇒9u(3.(9u)+2)=9k3u(27u+2)=k3⇒9u(3.(9u)+2)=9k3
Do đó đặt v=9vv=9v khi ấy v(3v+2)=9k3⇒3v(3v+2)=(3k)3=m3v(3v+2)=9k3⇒3v(3v+2)=(3k)3=m3
Lúc này phương trình là 9v2+6v=m3⇒(3v+1)2=m3+1=(m+1)(m2−m+1)9v2+6v=m3⇒(3v+1)2=m3+1=(m+1)(m2−m+1)
Vì gcd(m+1,m2−m+1)=1,3gcd(m+1,m2−m+1)=1,3 mà 3v+1⋮/33v+1⋮̸3 nên gcd(m+1,m2−m+1)=1gcd(m+1,m2−m+1)=1 do đó m2−m+1=l2m2−m+1=l2 giải phương trình nghiệm nguyên này thu được m=0m=0 do đó v=0v=0
Đưa về quá trình đặt ẩn ban đầu thu được x=0,y=1
x2+(x+y)2=(x+9)2
x2+x2+2xy+y2=x2+18x+81
x2+x2+2xy+y2-x2-18x-81=0
x2+2xy+y2-18x-81=0
het biet roi
Ta có: x^2+(x+y)^2=(x+9)^2
=>x^2+x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2=x^2+18x+81
=>2x^2+2xy+y^2-x^2-18x-81=0
=>(x^2+2xy+y^2)-18(x+1)-99=0
=>(x+1)^2-18(x+1)-99=0
=>(x+1)(x+1-18)-99=0
=>(x+1)(x-17)-99=0
=>(x+1)(x-17)=99
=>(x+1)(x-17)=1*99=3*33=......
=>x=tự tính nốt
=>
Tui vừa trả lời 3 bài này ở câu của Nguyễn Anh Quân
Xem tui giải đúng không nha
Xin Wrecking Ball nhận xét
\(\Leftrightarrow x^y+y^x+x^3+y^3+1+3\left(x+y\right)\left(x+1\right)\left(y+1\right)=x^3+y^3+1+z\)
\(\Leftrightarrow x^y+y^x+3\left(x+y\right)\left(y+1\right)\left(x+1\right)=z\)
Do \(VT>3\Rightarrow z>3\Rightarrow z\) lẻ đồng thời z không chia hết cho 3
Nếu \(x;y\) đều lẻ hoặc đều chẵn \(\Rightarrow VT\) chẵn (không thỏa mãn)
\(\Rightarrow\) x và y có đúng 1 số chẵn, do vai trò của x; y như nhau, giả sử y chẵn \(\Rightarrow y=2\)
\(\Rightarrow x^2+2^x+9\left(x+2\right)\left(x+1\right)=z\)
- Nếu \(x>3\Rightarrow x^2\) chia 3 dư 1, đồng thời do x lẻ \(\Rightarrow x=2k+1\)
\(\Rightarrow2^x=2^{2k+1}=2.4^k\) chia 3 dư 2
\(\Rightarrow x^2+2^x\) chia hết cho 3 \(\Rightarrow VT\) chia hết cho 3 (không thỏa mãn)
\(\Rightarrow x\le3\Rightarrow x=3\Rightarrow z=197\) (thỏa mãn)
Vậy \(\left(x;y;z\right)=\left(3;2;197\right)\)