Tính 1/1x3 + 1/3x5 +1/5x7 + ... + 1/19x21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Đặt :
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+..............+\dfrac{1}{19.21}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+............+\dfrac{2}{19.21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+..........+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{21}\)
\(\Leftrightarrow2A=\dfrac{20}{21}\)
\(\Leftrightarrow A=\dfrac{10}{21}\)
b, \(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...........+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+............+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+........+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=1-\dfrac{1}{2n+1}\)
\(\Leftrightarrow2A=\dfrac{2n}{2n+1}\)
\(\Leftrightarrow A=\dfrac{n}{2n+1}\)
Lời giải:
$2\times A=\frac{2}{1\times 3}+\frac{2}{3\times 5}+\frac{2}{5\times 7}+...+\frac{2}{19\times 21}$
$2\times A=\frac{3-1}{1\times 3}+\frac{5-3}{3\times 5}+\frac{7-5}{5\times 7}+...+\frac{21-19}{19\times 21}$
$=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{19}-\frac{1}{21}$
$=1-\frac{1}{21}=\frac{20}{21}$
$\Rightarrow A=\frac{20}{21}: 2= \frac{10}{21}$
6B=1.3.(5+1)+3.5.(7-1)+...+19.21(23-17)
6B=1.3.5+1.3+3.5.7-1.3.5+...+19.21.23-17.19.21
6B=3+19.21.23
6B=9180
B=9180/6
B=1530
tick nhé ko tick mai đến lớp tao phang
\(\frac{2}{1\times3}+\frac{2}{3\times5}+...+\frac{2}{19\times21}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)
đúng cái nhé
Ta có;\(\frac{4}{1\times3}+\frac{4}{3\times5}+\frac{4}{5\times7}+....+\frac{4}{19\times21}\)
\(=2\times\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+....+\frac{2}{19\times21}\right)\)
\(=2\times\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=2\times\left(1-\frac{1}{21}\right)=2\times\frac{20}{21}=\frac{40}{21}\)
4/1 x 3 + 4/ 3 x 5 + 4/ 5 x 7 + ....+ 4/ 17 x 19 + 4/ 19 x 21
= 2 x ( 2/ 1 x 3 + 2/ 3 x 5 + 2/ 5 x 7 + ...+ 2/ 17 x 19 + 2/ 19 x 21 )
= 2 x ( 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ...+ 1/17 - 1/19 + 1/19 - 1/21 )
= 2 x ( 1 - 1/21 )
= 2 x 20/21
= 40/21
Chúc bạn học giỏi !!!
c)
\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{20}{21}\)
\(=\frac{10}{21}\)
\(A\)= \(\frac{1}{3.4}+\frac{1}{4.5}+..+\frac{1}{49.50}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}=\)\(\frac{1}{3}-\frac{1}{50}=\frac{50}{150}-\frac{3}{150}=\frac{47}{150}\)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
(1/3x5+1/5x7+....+1/19x21)*x=9/7
(1/3-1/5+1/5-1/7+...+1/19-1/21)*x=9/7
(1/3-1/21)*x=9/7
2/7*x=9/7
=> x=9/7:2/7
=> x=9/2
Bạn leminhduc sai rùi @@
Ta xét :
B = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
2 x B = \(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
2 x B = \(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
2 x B = \(\frac{1}{3}-\frac{1}{21}\)=\(\frac{2}{7}\)
B = \(\frac{2}{7}:2\)
B = \(\frac{1}{7}\)
Thay B vào biểu thức ta có :
\(\frac{1}{7}.x=\frac{9}{7}\)
=> x = \(\frac{9}{7}:\frac{1}{7}\)=\(\frac{9}{7}.\frac{7}{1}\)=9
Vậy x = 9
\(\dfrac{1}{1 \times 3}+\dfrac{1}{3 \times 5}+\dfrac{1}{5 \times 7}+...+\dfrac{1}{19 \times 21}\)
\(=\dfrac{1}{2} \times (\dfrac{2}{1 \times 3}+\dfrac{2}{3 \times 5}+\dfrac{2}{5 \times 7}+...+\dfrac{2}{19 \times 21})\)
\(=\dfrac{1}{2} \times (1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21})\)
\(=\dfrac{1}{2} \times (1-\dfrac{1}{21})\)
\(=\dfrac{1}{2} \times \dfrac{20}{21}\)
\(=\dfrac{10}{21}\)
Gọi biểu thức đã cho là A
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{19.21}\)
\(2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{19.21}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{19}-\dfrac{1}{21}\)
\(2A=1-\dfrac{1}{21}=\dfrac{20}{21}\)
Vậy \(A=\dfrac{20}{21}\div2=\dfrac{10}{21}\)