tìm x :
a) ( x+4 )2 - x(x-5) = 19
b) x2 + 3x - 10 = 0
ai giải được hộ em c ơn ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(x+4\right)^2-x\left(x-5\right)=19\)
\(x^2+8x+16-x^2+5x=19\)
\(8x+5x=19-16\)
\(13x=3\)
\(x=\frac{3}{13}\)
\(b,x^2+3x-10=0\)
\(\Rightarrow x^2+5x-2x-10=0\)
\(\Rightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
a) (x+4)2 - x(x-5) = 19
x2+2.x.4+42 - x2 +5x = 19
8x +16 +5x =19
13x +16 =19
13x = 19-16=3
=> x=3:13=\(\frac{3}{13}\)
b) x2 +3x -10 =0
x(x+3) -10 =0
x(x+3) =10
=> x=2
chúc bn học tốt nha ^^ t chi mk nhé <3
1. Ta có : 3x+12=0 <=> x= -4
bảng xét dấu:
x | -∞ -4 + ∞ |
3x+12 |
- 0 + |
f(x) >0 ∀ x ∈ (-4;+∞)
f(x) <0 ∀ x∈ (-∞;-4)
2. Ta có : -5x+9=0 <=> x= \(\frac{9}{5}\)
Bảng xét dấu:
x | -∞ 9/5 +∞ |
-5x+9 | + 0 - |
f(x) >0 ∀ x ∈ (-∞; 9/5)
f(x) <0 ∀ x ∈(9/5; +∞)
3. Ta có : -3x-9=0 <=> x= -3
x | -∞ -3 +∞ |
-3x-9 | + 0 - |
f(x) >0 ∀ x∈ (-∞; -3)
f(x) <0 ∀x∈ ( -3; +∞ )
4. Ta có : x (2x+4)=0
+, x=0
+, 2x+4=0 <=> x= -2
x | -∞ -2 0 +∞ |
x | - \(|\) - 0 + |
2x+4 | - 0 + \(|\) + |
f (x) | + 0 - 0 + |
f(x) >0 ∀ x ∈ (-∞; -2) \(\cup\) (0; +∞)
f(x) <0 ∀ x ∈ (-2;0)
5. Ta có: (x-2)(-x+4)=0
+, x-2=0 <=> x=2
+, -x+4=0 <=> x= 4
x | -∞ 2 4 +∞ |
x-2 | - 0 + \(|\) + |
-x+4 | + \(|\) + 0 - |
f(x) | - 0 + 0 - |
f(x) >0 ∀ x ∈ (2;4)
f (x) <0 ∀x∈ (-∞;2) \(\cup\)(4; +∞)
6. Ta có : (-4x+3)(x-6)=0
+, -4x+3=0 <=>x= \(\frac{3}{4}\)
+, x-6 =0 <=> x=6
x | -∞ 3/4 6 +∞ |
-4x+3 | + 0 - \(|\) - |
x-6 | - \(|\) - 0 + |
f(x) | - 0 + 0 - |
f(x) >0 ∀ x∈ (3/4;6)
f(x) <0 ∀ x∈ (-∞; 3/4) \(\cup\)(6;+∞)
a: \(M=3x^5y^3-3x^5y^3-4x^4y^3+2x^4y^3+7xy^2=-2x^4y^3+7xy^2\)
b: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2=x^3+x^2+x+2\)
c: \(M\left(x\right)=-3x^4y^3+10+xy\)
\(a)M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(M=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(M=-2x^4y^3+7xy^2\)
\(\text{Bậc là:}7\)
\(b)P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(P\left(x\right)=\left(2x^3-x^3\right)+\left(-2x+3x\right)+x^2+2\)
\(P\left(x\right)=x^3+x+x^2+2\)
\(P\left(x\right)=x^3+x^2+x+2\)
\(\text{Bậc là:}3\)
\(M=\left(6x^6y-6x^6y\right)+\left(x^4y^3-4x^4y^3\right)+10+xy\)
\(M=-3x^4y^3+10+xy\)
\(\text{Bậc là:}7\)
a 180 -(x + 15) : 4 =80:5 180 - (x + 15) : 4 = 16 180 - ( x + 15) = 16 x 4 180 - ( x + 15 ) = 64 x + 15 = 180 - 64 x + 15 = 116 x= 116 - 15 x = 101
những bài này chủ yếu là biến đổi rồi phân tích thành nhân tử thôi
\(a,\left(x+4\right)^2-x\left(x-5\right)=19\)
\(x^2+8x+16-x^2+5x=19\)
\(8x+5x=19-16\)
\(13x=3\)
\(x=\frac{3}{13}\)
\(b,x^2+3x-10=0\)
\(\Rightarrow x^2+5x-2x-10=0\)
\(\Rightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)