cho tam giác ABC vuông cân tại A.Vẽ ra phía ngoài tam giác đều ABM và ACN.
a)tính góc MBC
b)kẻ AI vuông góc với BC chứng minh MI =NI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
góc MBA=60 ( tam giác BMA đều)
góc ABC =45 ( tam giác ABC vuông cân tại A)
-> góc MBA+góc ABC =60+45
-> góc MBC=105
b)Xét tam giác ABC vuong cân tại A ta có
AI là duong cao ( AI vuông góc BC)
-> AI là phân giác
-> góc BAI = góc IAC
ta có
góc MAB= góc NAC (=60)
góc BAI= góc IAC (cmt)
-> góc MAB+ góc BAI = góc NAC + góc IAC
-> góc MAI = góc IAN
ta có
AM=AB (( tam giác MBA deu)
AB=AC ( tam giác ABC vuông cân tại A)
AC= AN ( tam giác ANC đều)
=> AM=AN
Xét tam giác MAI và tam giác NAI ta có
AM=AN (cmt)
AI=AI (cc)
góc MAI= góc NAI (cmt)
-> tam giác MAI = tam giác NAI (cgc)
-> MI = NI
a, Vì △ABC vuông cân tại A => AB = AC (1) và ^ABC = ^ACB = 45o
Vì △ABM đều => AB = AM = BM (2) và ^ABM = ^BAM = ^BMA = 60o
Vì △ACN đều => AC = CN = AN (3) và ^ACN = ^CAN = ^CNA = 60o
Ta có: ^MBC = ^MBA + ^ABC = 60o + 45o = 105o
b, Xét △AIC vuông tại I và △AIB vuông tại I
Có: AC = AB (cmt)
AI là cạnh chung
=> △AIC = △AIB (ch-cgv)
=> IC = IB (2 cạnh tương ứng)
=> AI là trung tuyến của △ABC vuông cân tại A
=> IA = IC = IB = (1/2) . BC
c, Từ (1) ; (2) ; (3) => BM = CN
Ta có: ^NCI = ^NCA + ^ACI = 60o + 45o = 105o
Xét △NCI và △MBI
Có: NC = MB (cmt)
NCI = MBI (= 105o)
IC = IB (cmt)
=> △NCI = △MBI (c.g.c)
=> IN = IM (2 cạnh tương ứng)
`a)`
Có `Delta ABC` cân tại `A=>hat(B_1)=hat(C_1);AB=AC`
Có `hat(B_1)+hat(ABM)=180^0` ( kề bù )
`hat(C_1)+hat(ACN)=180^0` (kề bù)
mà `hat(B_1)=hat(C_1)(cmt)`
nên `hat(ABM)=hat(ACN)`
Xét `Delta ABM` và `Delta ACN` có :
`AB=C(cmt)`
`hat(ABM)=hat(ACN)(cmt)`
`BM=CN(GT)`
`=>Delta ABM=Delta ACN(c.g.c)(đpcm)`
`b)`
Có `Delta ABM=Delta ACN(cmt)=>hat(A_1)=hat(A_2)` ( 2 góc t/ứng )
Xét `Delta AHB` và `Delta AKC` có :
`hat(AHB)=hat(AHC)(=90^0)`
`AB=AC(cmt)`
`hat(A_1)=hat(A_2)(cmt)`
`=>Delta AHB=Delta AKC(c.h-g.n)(đpcm)`
a: Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC
AM chung
=>ΔABM=ΔACM
b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có
AM chung
góc IAM=góc KAM
=>ΔAIM=ΔAKM
=>AI=AI và MI=MK
c:AI=AK
MI=MK
=>AM là trung trực của IK=>AM vuông góc IK