(X-68) = (43/11-4) : (2121/2222-1): (333333/343434-1)
Giup em voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a-68=\left(3\frac{10}{11}-4\right):\left(\frac{2121}{2222}-1\right):\left(\frac{33333}{343434}-1\right)\)
\(a-68=\left(\frac{43}{11}-4\right):\left(\frac{-1}{22}\right):\left(\frac{-310101}{343434}\right)\)
\(a-68=\frac{-1}{11}.\frac{-22}{1}.\frac{-343434}{310101}\)
\(a-68=\frac{1}{11}.\frac{22}{1}.\frac{343434}{310101}.\left(-1\right)\)
\(a-68=\frac{-686868}{310101}\)
\(a=\frac{-686868}{310101}+68\)
\(a=\frac{-20400000}{310101}\)
Vậy \(a=\frac{-20400000}{310101}\)
\(x+7\dfrac{4}{5}=9\dfrac{7}{15}\)
\(=>x+\dfrac{39}{5}=\dfrac{142}{15}\)
\(=>x=\dfrac{142}{15}-\dfrac{39}{5}=\dfrac{142}{15}-\dfrac{117}{15}\)
\(=>x=\dfrac{25}{15}=\dfrac{5}{3}\)
___________
\(x-4\dfrac{9}{11}=\dfrac{2121}{2222}\)
\(=>x-\dfrac{53}{11}=\dfrac{21}{22}\)
\(=>x=\dfrac{21}{22}+\dfrac{53}{11}=\dfrac{21}{22}+\dfrac{106}{22}\)
\(=>x=\dfrac{127}{22}\)
\(x+7\dfrac{4}{5}=9\dfrac{7}{15}\)
\(x=9\dfrac{7}{15}-7\dfrac{4}{5}\)
\(x=\left(9-7\right)+\left(\dfrac{7}{15}-\dfrac{4}{5}\right)\)
\(x=2\dfrac{-1}{3}=\dfrac{5}{3}\)
\(x=\dfrac{2121:101}{2222:101}+4\dfrac{9}{11}\)
\(x=\dfrac{21}{22}+4\dfrac{18}{22}\)
\(x=\dfrac{21+4\cdot22+18}{22}=\dfrac{127}{22}\)
a ) \(x+7\frac{4}{5}=9\frac{7}{15}\)
\(x+\frac{39}{5}=\frac{142}{15}\)
\(x=\frac{142}{15}-\frac{39}{5}\)
\(x=\frac{5}{3}\)
b ) \(x-4\frac{9}{11}=\frac{2121}{2222}\)
\(x-\frac{53}{11}=\frac{21}{22}\)
\(x=\frac{21}{22}+\frac{53}{11}\)
\(x=\frac{127}{22}\)
So sánh: \(\dfrac{323232}{333333}\)và \(\dfrac{333333}{343434}\)
\(\Rightarrow\) Ta cần phải so sánh \(323232.343434\) và \(333333.333333\)
Mà: \(323232.343434>333333^2\)
\(\Rightarrow\dfrac{323232}{333333}>\dfrac{333333}{343434}\)
\(x+7\frac{4}{5}=9\frac{7}{15}\)
\(x=9\frac{7}{15}-7\frac{4}{5}\)
\(x=9\frac{7}{15}-7\frac{12}{15}\)
\(x=-2\frac{1}{3}\)
\(x-4\frac{9}{11}=\frac{2121}{2222}\)
\(x-4\frac{9}{11}=\frac{101.21}{101.22}\)
\(x-\frac{53}{11}=\frac{21}{22}\)
\(x=\frac{21}{22}+\frac{53}{11}\)
\(x=\frac{127}{22}=5\frac{17}{22}\)