K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

BD = 24

CD = 24

28 tháng 10 2016

 

ABCEHD

+) Kẻ AE là phân giác ngoài của góc BAC

Mà AD là phân giác của góc BAC nên AD vuông góc với AE => tam giác EAD vuông tại A

+) Áp dụng ĐL Pi - ta go trong tam giác vuông AHD có: DH = AD2AH2=452362=27 cm

+) Áp dụng hệ thức lượng trong tam giác vuông EAD có: AD2 = DH. DE => DE = AD2 / DH = 452/ 27 = 75 cm

+)Áp dụng tính chất tia phân giác trong và ngoài tam giác có: BDDC =ABAC =EBEC

Đặt BD = x (0 < x < 40) => CD = 40 - x. Ta có:

x40x =75x75+(40x) (do EB = DE - BD; EC = DE + DC)

=> x. (115 - x) = (40 - x).(75 - x)

<=> 115x - x2 = 3000 - 115x + x2 <=> x2 - 115x + 1500 = 0

=> x = 100 (Loại) hoặc x = 15 (thoả mãn)

Vậy BD = 15 cm hoặc BD = 40 - 15 = 25 cm (Nếu ta đổi vị trí B và C cho nhau)

 
3 tháng 10 2017

A B H D C E

+ Kẻ AE là là phân giác của góc BAC 

Mà AD là phân giác của góc BAC nên AD vuông góc với AE \(\Rightarrow\)tam giác EAD vuông góc tại A 

 + Áp dụng định lí Pi-ta-go trong tam giác vuông AHD có: \(DH=\sqrt{AD^2-AH^2}=\sqrt{45^2-36^2}=27cm\)

 + Áp dụng hệ thức lượng giác trong tam giác vuông EAD có: \(AD^2=DH.DE\Rightarrow DE=\frac{AH^2}{DH}=\frac{45^2}{27}=75cm\)

 + Áp dụng tính chất phân giác trong và ngoài tam giác có: \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{EB}{EC}\)

Đặt: \(BD=x0< x< 40\Rightarrow CD=40-x\), ta có:

\(\frac{x}{40-x}=\frac{75-x}{75+40-x}\)do \(EB=DE-BD;EC=DE+DC\)

\(\Rightarrow x.115-x=40-x.75-x\)

\(\Leftrightarrow115x-x^2=3000-115x+x^2\Leftrightarrow x^2-115x+1500=0\)

\(\Rightarrow x=100\)loại hoặc \(x=15\)thoả mãn

Vậy: \(BD=15cm\)hoặc \(BD=40-15=25cm\). Nếu ta đổi vị trí B và C cho nhau

P/s: Câu hỏi của thang Tran - Toán lớp 9 - Học toán với OnlineMath

3 tháng 10 2017

thanks ban nha

30 tháng 3 2021

A B C H D

30 tháng 3 2021

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

17 tháng 8 2021

A B C H D

Ta có AD là tia phân giác \(\widehat{BAC}\)

=> \(\frac{BD}{DC}=\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\)

mà BD + DC = BC = 35

Lại có AB2 + AC2 = BC2 (định lý pi-ta-go trong tam giác vuông ABC) 

<=> \(\left(\frac{3}{4}AC\right)^2+AC^2=35^2\)

<=> \(AC^2.\frac{25}{16}=35^2\)

<=> AC = 28 

=> AB = 21

Xét tam giác HAC và tam giác ABC có : 

\(\hept{\begin{cases}\widehat{C}\text{ chung}\\\widehat{CAB}=\widehat{CHA}\end{cases}}\Leftrightarrow\Delta ABC\approx\Delta HAC\left(g-g\right)\)(1)

Tương tự \(\Delta ABC\approx HBA\)(g-g) (2) 

Từ (1) và (2) => \(\Delta HAC\approx\Delta HBA\)

=> \(\frac{AB}{AC}=\frac{AH}{CH}=\frac{HB}{HA}=\frac{3}{4}\)

mà AH2 + CH2 = AC2 (ĐỊNH LÝ PITAGO) 

=>\(\left(\frac{3}{4}CH\right)^2+CH^2=21^2\)

<=> \(\frac{25}{16}CH^2=21^2\)

<=> CH = 16,8 cm 

=> BH = BC - CH = 35 - 16,8 =  18,2 

=> DH = BH - BD = 18,2 - 15 = 3,2 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=100\)

hay BC=10cm

Xét ΔABC có BD là đường phân giác ứng với cạnh AC

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó: AD=3cm; CD=5cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có 

\(\widehat{ABC}\) chung

Do đó: ΔABC\(\sim\)ΔHBA

Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)

hay \(AB^2=BH\cdot BC\)

19 tháng 8 2021

c) Ta có: \(\widehat{ABD}=\widehat{DBC}\)( BD là phân giác )\(\Rightarrow90^0-\widehat{ABD}=90^0-\widehat{DBC}\Rightarrow\widehat{BIH}=\widehat{ADI}\Rightarrow\widehat{AID}=\widehat{ADI}\Rightarrow\Delta ADI\) cân tại A\(\Rightarrow AI=AD\Rightarrow\dfrac{AB}{AI}=\dfrac{AB}{AD}\)

Xét Δ ABI và Δ CBD có:

\(\widehat{BAI}=\widehat{BCD}\left(\Delta ABC\sim\Delta HBA\right)\)

\(\dfrac{AB}{AI}=\dfrac{BC}{CD}\left(=\dfrac{AB}{AD}\right)\)

\(\Rightarrow\Delta ABI\sim\Delta CBD\left(c.g.c\right)\)

d) Xét ΔABH có:

BI là tia phân giác của \(\widehat{ABH}\)

\(\Rightarrow\dfrac{IH}{IA}=\dfrac{BH}{AB}\left(1\right)\)( tính chất tia phân giác)

Xét ΔABC có:

BD là tia phân giác của \(\widehat{ABC}\)

\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)( tính chất tia phân giác)

Ta có: \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\left(\Delta ABC\sim\Delta HBA\right)\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\dfrac{IH}{IA}=\dfrac{AD}{DC}\left(đpcm\right)\)