K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

a) Có vẻ đề o đúng lắm . Theo mình o phải là 11/11 mà 1/11

Ta có \(\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>...>\frac{1}{19}>\frac{1}{20}\)

\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

hay \(S>\frac{1}{2}\)

b)Ta có 1998 x 1999 + 3997=(2000-2) x 1999 +3997 = 2000 x 1999 - 2 x 1999 +3997 = 1999 x 2000 -3998 +3997 =1999 x 2000 -1

< 1999 x 2000 +2 

=> 1999 x 2000 +2 / 1998 x 1999 +3997 > 1 hay M>1

13 tháng 7 2019

Thanks you . Mình sẽ kết bạn với cậu nhé

23 tháng 3 2017

\(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1999}{2001}\)

\(\Leftrightarrow\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{1999}{2001}\)

\(\Leftrightarrow2\left(\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{1999}{2001}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1999}{4002}\)

\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{1999}{4002}\)\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2001}\)

\(\Leftrightarrow x+1=2001\Leftrightarrow x=2000\)

15 tháng 3 2022

Gì vậy

21 tháng 4 2017

Câu 1:

Tại \(x=5\) thì ta có pt:

\(pt\Leftrightarrow10+4m^2=19\)

\(\Leftrightarrow4m^2=9\Leftrightarrow m^2=\dfrac{9}{4}\)

\(\Leftrightarrow m=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\)

Vậy với \(m=\pm\dfrac{3}{2}\) thì pt có nghiệm là \(x=5\)

Câu 2:

\(\dfrac{x+5}{1999}+\dfrac{x+7}{1997}=\dfrac{x+9}{1995}+\dfrac{x+11}{1993}\)

\(\Leftrightarrow\dfrac{x+5}{1999}+1+\dfrac{x+7}{1997}+1=\dfrac{x+9}{1995}+1+\dfrac{x+11}{1993}+1\)

\(\Leftrightarrow\dfrac{x+2004}{1999}+\dfrac{x+2004}{1997}=\dfrac{x+2004}{1995}+\dfrac{x+2004}{1993}\)

\(\Leftrightarrow\dfrac{x+2004}{1999}+\dfrac{x+2004}{1997}-\dfrac{x+2004}{1995}-\dfrac{x+2004}{1993}=0\)

\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{1999}+\dfrac{1}{1997}-\dfrac{1}{1995}-\dfrac{1}{1993}\right)=0\)

\(\Rightarrow x+2004=0\). Do \(\dfrac{1}{1999}+\dfrac{1}{1997}-\dfrac{1}{1995}-\dfrac{1}{1993}\ne0\)

\(\Rightarrow x=-2014\)

23 tháng 11 2015

Bài 1:400

Bài 2 : 7 

7 tháng 6 2019

a, (sửa đề )

\(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{x.\left(x+1\right)}=\frac{1999}{2000}\)

=\(1+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}\right)=\frac{1999}{2000}\)

=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x+\left(x+1\right)}=1-\frac{1999}{2000}=\frac{1}{2000}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{2000}\)

=\(\frac{1}{1}-\frac{1}{x+1}=\frac{1}{2000}\)

=\(\frac{1}{x+1}=\frac{1}{1}-\frac{1}{2000}=\frac{1999}{2000}\)

=> \(x+1=1:\frac{1999}{2000}=\frac{2000}{1999}\)

=>\(x=\frac{2000}{1999}-1=\frac{1}{1999}\)

Vậy x ∈{ \(\frac{1}{1999}\)}

b, \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)

=> \(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)

=>\(\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{8.9}+.....+\frac{2}{x+\left(x+1\right)}=\frac{2}{9}\)

=>2.(\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2}{9}\)

=>\(\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+....+\frac{1}{x+\left(x+1\right)}=\frac{2}{9}:2=\frac{1}{9}\)

=>\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)

=>\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

=>\(\frac{1}{x+1}=\frac{1}{6}-\frac{1}{9}=\frac{1}{18}\)

=>\(x+1=18\)

=>\(x=18-1=17\)

=>x∈{17}

\(\Leftrightarrow\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+1\right)}=1+\dfrac{1999}{1993}\)

\(\Leftrightarrow2\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3992}{1993}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1996}{1993}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{1996}{1993}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{-3}{1993}\)

=>x+1=-1993/3

hay x=-1996/3

23 tháng 7 2017

\(\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+...+\dfrac{1}{\left(x+1999\right)\left(x+2000\right)}=\dfrac{1}{x+200}=\dfrac{1}{5}\)\(\Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+...+\dfrac{1}{x+1999}-\dfrac{1}{x-2000}=\dfrac{1}{x+200}=\dfrac{1}{5}\)

\(\Rightarrow\dfrac{1}{x+1}-\dfrac{1}{x+2000}=\dfrac{1}{x+200}=\dfrac{1}{5}\)

Đề này sai nhé,hình như thừa dữ kiện đề r