K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2015

n = 0 => (1) = 9 .1 + 18 = 27 chia hết cho 27 
n = 1 => (1) = 9 .10 + 18 = 108 chia hết cho 27 
đặt k = n , ta giả sử 9.10^k + 18 chia hết cho 27 
ta chứng minh 9.10^(k + 1) +18 chia hết cho 27 
= 10.9.10^(k) +18 = 9.10^k + 18 + 9.9.10^k = { 9.10^k + 18 } + { 81.10^k } 
cả 2 nhóm đều chia hết cho 27 => đpcm 

26 tháng 2 2016

ta có 10^n có dạng 1000..0

=> 9.10^n có dạng 90...0

từ đó ta có 9.10^n +18 sẽ có dạng 900...018

=> 27:9,3 => 900...018:9,3

=> 9.10^n+18:27

4 tháng 12 2015

bài này áp dụng phương pháp quy nạp 2 lần. 
................................. 
chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm.

 

tick cho mình nghe bạn =^.^=

4 tháng 12 2015

 

A= 10n -1  + 18.n  = 9999......9 + 18.n   ( có n chứ số 9)

                          = 9.1111....1 + 18n     ; Mà 1111.....1 = 9k + (1+1+1+1+.....+1 )  = 9.k + n

                         = 9.(9k +n)  + 18.n

                        = 81.k + 9n +18.n

                       = 81.k + 27.n

                      = 27.( 3k +n )   chia hết cho 27

Vậy A chia hết cho 27 ; với  n thuộc N

 

18 tháng 12 2016

khi n= 1 

=> A=10^1 + 18.1 - 1 = 27 chia hết cho 27

khi n=k

=>A= 10^k +18k -1 

khi n=k+1

10^k+1 +18(k+1) -1

=10^k+1 +18k+18-1

=10^k+1+18k+17 chia hết cho 27 

18 tháng 12 2016

Cảm ơn bạn lý phụng nhi rất nhiều =)))))

Trong đề cương toán của mình có câu nay2 mình không biết. Cảm ơn bạn đã dành thời gian cho câu hỏi này 

Ngày mai mình thi rồi =))))

Chúc bạn thi tốt nhé . 

1/

Gọi số cần tìm là a

Ta có : 

a : 17 dư 8 

=> a - 8 chia hết cho 17

=> a + 17 - 8 chia hết cho 17

=> a + 9 chia hết cho 17

a : 25 dư 16

=> a - 16 chia hết cho 25

=> a + 25 - 16 chia hết cho 25

=> a + 9 chia hết cho 25

=> a + 9 thuộc BC ( 17 ; 25 )

Ta có :

17 = 17

25 = 52 

=> BCNN ( 17 ; 25 ) = 17 . 52 = 425

=> BC ( 17 ; 25 ) = B ( 425 ) = 

=> a + 9 = B ( 425 ) = { 0 ; 425 ; 950 ; 1375 ; .... }

=> a = { -9 ; 416 ; 941 ; 1366 ; .... }

Mà a là số tự nhiên nhỏ nhất 

=> a = 416

Vậy số cần tìm là 416

14 tháng 12 2019

2, Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

14 tháng 12 2019

Câu hỏi của Dương Đình Hưởng - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo link trên.

16 tháng 4 2017

Ta có: \(9.10^n+18=9\left(10^n+2\right)\) chia hết cho 9 

Xét \(10^n+2=100...00+2=100...02\)

                           (n chữ số 0)            (n-1 chữ số 0)

=> \(\left(10^n+2\right)⋮3\) vì có 1+0+0+...+0+2=3 chia hết cho 3 

=>\(9.10^n+18\) chia hết cho 9.3=27