chứng minh rằng trong tam giác cân tổng các khoảng cách từ một điểm bất kỳ trên cạnh đáy đến hai cạnh bên không phụ thuộc vào vị trí của điểm đó trên cạnh đáy
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
LN
31 tháng 12 2018
Có nhiều cách CM nhưng sử dụng diện tích là cách nhanh nhất
Kẻ đường cao BD
Vì tam giác ABC cân tại A nên AB=AC
Ta có :
\(S_{ABM}+S_{AMC}=S_{ABC}\)
\(\Leftrightarrow\frac{1}{2}AB\cdot MH+\frac{1}{2}AC\cdot MK=\frac{1}{2}AC\cdot BD\)
\(\Leftrightarrow\frac{1}{2}AC\left(MH+MK\right)=\frac{1}{2}AC\cdot BD\)(Vì AB=AC)
\(\Leftrightarrow MH+MK=BD\)
Mà BD là đường cao của tam giác ABC cố định
Hay BD cố định
Suy ra MH+MK không đổi
Vậy........
Còn cách hai thì phức tạp hơn