Chứng tỏ 57+81+200 không chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có S = 1 + 3 + 32 + 33 + ... + 357
3S = ( 1 + 3 ) + ( 32 + 33 ) + ... + ( 356 + 357 )
= 1( 1 + 3 ) + 32( 1 + 3 ) + ... + 356( 1 + 3 )
= 1 . 4 + 32 . 4 + ... + 356 . 4
= 4( 1 + 32 + ... + 356 ) ⋮ 4
Vậy A ⋮ 4
Lại có S = 1 + 3 + 32 + 33 + ... + 357
S - 1 = 3 + 32 + 33 + ... + 357
= ( 3 + 32 + 33 ) + ( 34 + 35 + 36 ) + ... + ( 355 + 356 + 357 )
= 3( 1 + 3 + 32 ) + 34( 1 + 3 + 32 ) + ... + 355( 1 + 3 + 32 )
= 3 . 13 + 34 . 13 + ... + 355 . 13
= 13( 3 + 34 + ... + 355 ) ⋮ 13
Vậy ( S - 1 ) ⋮ 13 ⇒ S không chia hết cho 13
Ta có S = 1 + 3 + 32 + 33 + ... + 357
3S = 3 + 32 + 33 + 34 + ... + 358
3S - S = ( 3 + 32 + 33 + 34 + ... + 356 ) - ( 1 + 3 + 32 + 33 + ... + 357 )
2S = 358 - 1 = 356 . 9 - 1 = ( 34 )14 . 9 - 1 = 8114 . 9 - 1 = ( ...9 ) - 1 = ( ...8 )
S = ( ...8 ) : 2 = ( ...4 )
Vậy chữ số tận cùng của S là 4
Ta có :
\(C+3^{101}=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+.....+3^{96}\left(1+3+3^2\right)+3^{99}\left(1+3+3^2\right)\)
\(C+3^{101}=13+3^3.13+.....+3^{96}.13+3^{99}.13\)
=> C+3101 chia hết cho 13
Mặt khác 3101 không chia hết cho 13
=> C không chia hết cho 13
Ta có :
\(C=\left(1+7+7^2\right)+7^3\left(1+7+7^2\right)+....+7^{27}\left(1+3+3^2\right)+7^{30}\)
\(C=57+7^3.57+....+7^{27}.57+7^{30}\)
Mà 7^30 không chia hết cho 57
=> C không chia hết cho 57
Bài 4:
Ta có:
M=1+7+72+...+781
M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)
M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)
M=400+74.400+...+778.400
M=400.(1+74+...+778)
\(\Rightarrow\)M=......0
Vậy chữ số tận cùng của M là chữ số 0
Bài 5:
a)Ta có:
M=1+2+22+...+2206
M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)
M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)
M=7+23.7+...+2204.7
M=7.(1+23+...+2204)\(⋮\)7
Vậy M chia hết cho 7
c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:
Ta có:
M=1+2+22+...+2206
2M=2+22+23+...+2207
2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)
M=2+22+23+...+2207-1-2-22-...-2206
\(\Rightarrow\)M=2207-1
M+1=2207-1+1
M+1=2207
Ta có:
M+1=2x
2x=M+1
2x=2207
x=2207:2
x=\(\frac{2^{207}}{2}\)
Bài 6:
Ta có:
A=(1+3+32)+(33+34+35)+...+(357+358+359)
A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)
A=13+33.13+...+357.13
A=13.(1+33+..+357)\(⋮\)13
Vậy A chia hết cho 13
mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha
số gồm 81 số 1 = 111111111(9 lần số 1)x10000000010000000001.......0000000001(9 lần 1000000001)
Mà 111111111(9 số 1) chia hết cho 9 vì tổng các chữ số=9
và 1000000001.........1000000001( 9 lần 1000000001) có tổng câc chữ số là 9 nên chia hết cho 9
Vậy số đã cho chia hết cho 9x9=81
Vì 57 ,81 chia hết cho 3, 200 không chia hết cho 3
\(\Rightarrow\)57+81+200 không chia hết cho 3 (vì 200 không chia hết cho 3 nên tổng không chia hết cho 3)
Vậy 57+81+200 không chia hết cho 3
Vì 200 không chia hết cho 3 nên 57 +81+200 không chia hết cho 3