X x X = 27x3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+x=27.3\)
\(\Rightarrow2x=81\)
\(\Rightarrow x=81:2\)
\(\Rightarrow x=40,5\)
a) = x^2 - 9 - (x^2 + 3x - 10)
= -3x + 1
b) = 3x + 1 - 3x + 19
= 20
a: \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\)
\(=x^2-9-x^2-3x+10\)
\(=-3x+1\)
b: \(\dfrac{27x^3+1}{9x^2-3x+1}-\left(3x-19\right)\)
\(=3x+1-3x+19\)
=20
a: Ta có: \(27x^3-54x^2+36x=8\)
\(\Leftrightarrow27x^3-54x^2+36x-8=0\)
\(\Leftrightarrow\left(3x-2\right)^3=0\)
\(\Leftrightarrow3x-2=0\)
hay \(x=\dfrac{2}{3}\)
b: Ta có: \(\left(x+3\right)\cdot\left(x^2-3x+5\right)=x^2+3x\)
\(\Leftrightarrow\left(x+3\right)\cdot\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x=-3\)
(x-1)3+(2x+3)3=27x3+8
=> (x - 1 + 2x + 3)[(x - 1)2 - (x - 1)(2x + 3) + (2x + 3)2] = (3x)3 + 23
=> (3x + 2)[x2-2x+1-(2x2+x-3)+4x2+12x+9] = (3x + 2)[(3x)2 - 3x.2 + 22]
=> (3x + 2)(3x2 + 9x + 13) = (3x + 2)(9x2 - 6x + 4)
=> (3x + 2)(3x2 + 9x + 13) - (3x + 2)(9x2 - 6x + 4) = 0
=> (3x + 2)(3x2 + 9x + 13 - 9x2 + 6x - 4) = 0
=> (3x + 2)(-6x2 + 15x + 9) = 0
=>\(\left[{}\begin{matrix}3x+2=0\\-6x^2+15x+9=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}3x=-2\\-3\left(2x^2+5x\right)=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x^2+5x=3\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x^2+6x-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\2x\left(x+3\right)-\left(x+3\right)=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\\left(2x-1\right)\left(x+3\right)=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)
Vậy phương trình (x-1)3+(2x+3)3=27x3+8 có nghiệm là {-2/3;1/2;-3}
=>x^3-3x^2+3x-1+8x^3+36x^2+54x+27=27x^3+8
=>37x^3+51x^2+57x+26-27x^3-8=0
=>10x^3+51x^2+57x+18=0
=>(5x+3)(2x^2+9x+6)=0
=>x=-3/5 hoặc \(x=\dfrac{-9\pm\sqrt{33}}{4}\)
a.
\(\Leftrightarrow\left(3x-1\right)^3=\left(-\dfrac{1}{2}\right)^3\)
\(\Leftrightarrow3x-1=-\dfrac{1}{2}\)
\(\Leftrightarrow3x=\dfrac{1}{2}\)
\(\Leftrightarrow x=\dfrac{1}{6}\)
b.
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)-x\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(2x-1-x\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{2}\\\end{matrix}\right.\)
c.
\(\Leftrightarrow3x\left(5x-2\right)-2\left(5x-2\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(5x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
a) (2x - 5)2 - (5 + 2x) = 0
<=> 4x2 - 22x + 20 = 0
\(\Leftrightarrow\left(2x-\dfrac{11}{2}\right)^2=\dfrac{41}{4}\)
\(\Leftrightarrow x=\dfrac{\pm\sqrt{41}+11}{4}\)
b) \(27x^3-54x^2+36x=0\)
\(\Leftrightarrow x\left(3x^2-6x+4\right)=0\)
\(\Leftrightarrow x=0\) (Vì \(3x^2-6x+4=3\left(x-1\right)^2+1>0\forall x\))
c) x3 + 8 - (x + 2).(x - 4) = 0
\(\Leftrightarrow\left(x+2\right).\left(x^2-2x+4\right)-\left(x+2\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2-3x+8\right)=0\)
\(\Leftrightarrow x=-2\) (Vì \(x^2-3x+8=\left(x-\dfrac{3}{2}\right)^2+\dfrac{23}{4}>0\))
d) \(x^6-1=0\)
\(\Leftrightarrow\left(x^2\right)^3-1=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\)
\(\Leftrightarrow x^2-1=0\) (Vì \(x^4+x^2+1>0\))
\(\Leftrightarrow x=\pm1\)
\(d,x^6-1=0\\ \Leftrightarrow\left(x^2\right)^3-1^3=0\\ \Leftrightarrow\left(x^2-1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x^4+x^2+1=0\left(Vô.lí,vì:x^4\ge0;x^2\ge0,\forall x\in R\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\\ c,\left(x^3+8\right)-\left(x+2\right)\left(x-4\right)=0\\ \Leftrightarrow\left(x^3+8\right)-\left(x^2-2x-8\right)=0\\ \Leftrightarrow x^3-x^2+2x+16=0\\ \Leftrightarrow x^3+2x^2-3x^2-6x+8x+16=0\\ \Leftrightarrow x^2\left(x+2\right)-3x\left(x+2\right)+8\left(x+2\right)=0\\ \Leftrightarrow\left(x^2-3x+8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2-3x+8=0\left(Vô.lí\right)\\x+2=0\end{matrix}\right.\Leftrightarrow x=-2\)
a: A=(2x-1)^3
Khi x=5,5 thì A=(2*5,5-1)^3=10^3=1000
b: B=27x^3+54x^2+36x+7
=(3x)^3+3*(3x)^2*2+3*3x*2^2+2^3-1
=(3x+2)^3-1
=(-8+2)^3-1
=(-6)^3-1=-217
\(a,=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\\ b,=\left(x+y\right)\left(x-5\right)\\ c,=5x^2\left(x-y\right)-10x\left(x-y\right)=5x\left(x-2y\right)\left(x-y\right)\\ d,=x^2-2xy=x\left(x-2y\right)\\ e,=\left(3x-2y\right)\left(9x^2+6xy+4y^2\right)\)
x.x=27.3=81=9.9
x=9
tks bạn