K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

2^2020-2^2016

=2^2016-(2^4-1)

=2^2016x15 chia hết cho 15

h cho mình nhé

5 tháng 12 2016

\(2^4\)dong du 15 (mod 1)

=>\(\left(2^4\right)^{505}=2^{2020}\)đồng dư với 15 (mod 1)

\(\left(2^4\right)^{504}=2^{2016}\)đồng dư với 15 (mod 1)

=>22020 - 22016đồng dư với 15 (mod 0) =>dpcm

AH
Akai Haruma
Giáo viên
22 tháng 4 2023

Lời giải:
$3^{2022}+3^{2020}-(2^{2020}+2^{2020})$

$=3^{2020}(3^2+1)-2.2^{2020}=10.3^{2020}-2^{2021}$

Ta thấy: $10.3^{2020}\vdots 10$, còn $2^{2021}\not\vdots 10$ nên $10.3^{2020}-2^{2021}\not\vdots 10$ 

Bạn xem lại đề.

16 tháng 4 2022

kp[

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 tháng 9 2023

\(A=2^1+2^2+2^3+...+2^{2016}\)

\(\Rightarrow A=2\left(1+2^1+2^2\right)+2^4\left(1+2^1+2^2\right)...+2^{2014}\left(1+2^1+2^2\right)\)

\(\Rightarrow A=2.7+2^4.7...+2^{2014}.7\)

\(\Rightarrow A=7\left(2+2^4...+2^{2014}\right)⋮7\)

\(\Rightarrow dpcm\)

6 tháng 1 2020

\(8^{102}-2^{102}=\left(8^{51}-2^{51}\right)\left(8^{51}+2^{51}\right)\equiv\left(8^{51}-2^{51}\right).\left(8+2\right)\equiv\left(8^{51}-2^{51}\right).10\equiv0\left(mod10\right)\)

6 tháng 1 2020

Ta có : 8102=82.(84)25=64.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)

            2102=22.(24)25=4.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)

\(\Rightarrow8^{102}-2^{102}=\left(\overline{...4}\right)-\left(\overline{...4}\right)=\overline{...0}⋮10\)

Vậy 8102-2102\(⋮\)10.

19 tháng 12 2021

\(P=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{2020}\right)⋮3\)

19 tháng 12 2021

\(P=\left(1+2\right)+2^2\left(1+2\right)+...+2^{2020}\left(1+2\right)\\ P=\left(1+2\right)\left(1+2^2+...+2^{2020}\right)=3\left(1+2^2+...+2^{2020}\right)⋮3\)