2√144 + √100 - √81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(64-y^2=8^2-y^2=\left(8-y\right)\left(8+y\right)\)
2) \(81-x^2=9^2-x^2=\left(9-x\right)\left(9+x\right)\)
3) \(100-a^2=10^2-a^2=\left(10-a\right)\left(10+a\right)\)
4) \(144-b^2=12^2-b^2=\left(12-b\right)\left(12+b\right)\)
B={x\(\in\)N|x=3k; 1<=k<=4}
C={x\(\in\)N|x=4*a2; 1<=a<=5}
D={x\(\in\)N|x=9*a2;1<=a<=4}
E={x\(\in\)N|x=4k; 0<=x<=4}
G={x\(\in\)N|x=(-3)^k; 1<=k<=4}
=(48/49) x (63/64) x (80/81) x (99/100) x (120/121) x (143/144)
=(6x8/7x7) x (7x9/8x8) x (8x10/9x9) x (9x11/10x10) x (10x12/11x11) x (11x13/12x12)
=\(\frac{6x8x8x10x10x12x7x9x9x11x11x13}{7x7x8x8x9x9x10x10x11x11x12x12}\)
rút gọn đi còn: 13/14
\(4^{x-5}=16\)
\(4^{x-5}=4^2\)
\(x-5=2\)
\(x=2+5\)
\(x=7\)
\(45-2^{x-1}=29\)
\(2^{x-1}=16\)
\(2^{x-1}=2^4\)
\(x-1=4\)
\(x=5\)
\(\left(2+x\right)^2=144\)
\(\left(2+x\right)^2=12^2\)
\(2+x=12\)
\(x=12-2\)
\(x=10\)
\(\left(x-5\right)^2=81\)
\(\left(x-5\right)^2=9^2\)
\(x-5=9\)
\(x=14\)
\(\left(13-x\right)^4=81\)
\(\left(13-x\right)^4=3^4\)
\(13-x=3\)
\(x=13-3\)
\(x=10\)
\(...4^{x-5}=4^2\Rightarrow x-5=2\Rightarrow x=7\)
\(...2^{x-1}=45-29=16\Rightarrow2^{x-1}=2^4\Rightarrow x-1=4\Rightarrow x=5\)
\(...\Rightarrow\left(2+x\right)^2=12^2\Rightarrow\left[{}\begin{matrix}2+x=12\\2+x=-12\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=-14\end{matrix}\right.\)
\(...\Rightarrow\left(x-5\right)^2=9^2\Rightarrow\left[{}\begin{matrix}x-5=3\\x-5=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
\(...\Rightarrow\left(13-x\right)^4=3^4\Rightarrow\left[{}\begin{matrix}13-x=3\\13-x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=10\\x=16\end{matrix}\right.\)
\(\left(\frac{1-1}{49}\right).\left(\frac{1-1}{64}\right).\left(\frac{1-1}{81}\right).\left(\frac{1-1}{100}\right).\left(\frac{1-1}{121}\right).\left(\frac{1-1}{144}\right)\)
= \(\frac{0}{49}.\frac{0}{64}.\frac{0}{81}.\frac{0}{100}.\frac{0}{121}.\frac{0}{144}\)
= 0 . 0 . 0 . 0 . 0 . 0 = 0
\(2\sqrt{144}+\sqrt{100}-\sqrt{81}\)
\(=2\sqrt{12^2}+\sqrt{10^2}-\sqrt{9^2}\)
\(=2.12+10-9\)
\(=25\)