tìm điều kiện để phân thức xác định \(\frac{25x^2-1}{\text{ }16x^2-25}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phân thức trên được xác định
Thì 16x2-25\(\ne\)0
=> (4x-5)(4x+5)\(\ne\)0
=> \(\begin{cases}4x-5\ne0\\4x+5\ne0\end{cases}\)
=>\(\begin{cases}4x\ne5\\4x\ne-5\end{cases}\)
=>\(\begin{cases}x\ne\frac{5}{4}\\x\ne\frac{-5}{4}\end{cases}\)
Vậy để phân thức trên được xác định thì \(x\ne\frac{5}{4}\) và \(x\ne\frac{-5}{4}\)
\(\frac{-5}{\frac{x-2}{3x+1}+1}=\frac{-5}{\frac{x-2+3x+1}{3x+1}}=\frac{-5}{\frac{4x-1}{3x+1}}=\frac{-5\left(3x+1\right)}{4x-1}=\frac{-15x-5}{4x-1}\)
phân thức xđ \(< =>4x-1\ne0< =>x\ne\frac{1}{4}\)
\(\frac{4x-1}{5x^2+x}=\frac{4x-1}{x\left(5x+1\right)}\)
phân số \(\frac{4x-1}{x\left(5x+1\right)}\)dược xác định với điều kiện \(\hept{\begin{cases}x\ne0\\5x+1\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{-1}{5}\end{cases}}\)
vậy \(ĐKXĐ\)của phân thức là \(\hept{\begin{cases}x\ne0\\x\ne\frac{-1}{5}\end{cases}}\)
1)
a) Biểu thức \(\dfrac{x-2}{x^2+8x}\) vô nghĩa khi \(x^2+8x=0\)
\(\Leftrightarrow x\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{0;-8\right\}\) thì biểu thức \(\dfrac{x-2}{x^2+8x}\) vô nghĩa
b) Biểu thức \(\dfrac{25x^2-1}{16x^2-25}\) vô nghĩa khi \(16x^2-25=0\)
\(\Leftrightarrow\left(4x-5\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=5\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{\dfrac{5}{4};-\dfrac{5}{4}\right\}\) thì biểu thức \(\dfrac{25x^2-1}{16x^2-25}\) vô nghĩa
c) Biểu thức \(\dfrac{x^2+1}{2x^2-28x+98}\) vô nghĩa khi \(2x^2-28x+98=0\)
\(\Leftrightarrow2\left(x^2-14x+49\right)=0\)
\(\Leftrightarrow\left(x-7\right)^2=0\)
\(\Leftrightarrow x-7=0\)
hay x=7
Vậy: Khi x=7 thì biểu thức \(\dfrac{x^2+1}{2x^2-28x+98}\) vô nghĩa
d) Để biểu thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}\) vô nghĩa thì \(9-\left(x+3\right)^2=0\)
\(\Leftrightarrow\left(3-x-3\right)\left(3+x+3\right)=0\)
\(\Leftrightarrow-x\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{0;-6\right\}\) thì biểu thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}\) vô nghĩa
2)
a) ĐKXĐ: \(x\notin\left\{0;-8\right\}\)
b) ĐKXĐ: \(x\notin\left\{\dfrac{5}{4};-\dfrac{5}{4}\right\}\)
c) ĐKXĐ: \(x\ne7\)
d) ĐKXĐ: \(x\notin\left\{0;-6\right\}\)
3)
a) Để phân thức \(\dfrac{x-2}{x^2+8x}=0\) thì x-2=0
hay x=2(nhận)
Vậy: Khi x=2 thì phân thức \(\dfrac{x-2}{x^2+8x}=0\)
b) Để phân thức \(\dfrac{25x^2-1}{16x^2-25}=0\) thì \(25x^2-1=0\)
\(\Leftrightarrow\left(5x-1\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\5x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=1\\5x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\left(nhận\right)\\x=-\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
Vậy: Khi \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\) thì phân thức \(\dfrac{25x^2-1}{16x^2-25}=0\)
c) Để phân thức \(\dfrac{x^2+1}{2x^2-28x+98}=0\) thì \(x^2+1=0\)
mà \(x^2+1>0\forall x\) thỏa mãn ĐKXĐ
nên \(x\in\varnothing\)
Vậy: Không có giá trị nào của x để \(\dfrac{x^2+1}{2x^2-28x+98}=0\)
d) Để phân thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}=0\) thì 2x+3=0
\(\Leftrightarrow2x=-3\)
hay \(x=-\dfrac{3}{2}\)(nhận)
Vậy: Khi \(x=-\dfrac{3}{2}\) thì phân thức \(\dfrac{2x+3}{9-\left(x+3\right)^2}=0\)
mình chỉ làm 1 câu thôi nhé các câu khác làm tương tự
1. biểu thức vô nghĩa <=> mẫu thức = 0
\(x^2+8x=0< =>\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)
vậy ...
2. tập xác định là tập hợp các giá trị làm phân thức có nghĩa (trong căn thì ≥ 0 ; dưới mẫu thì ≠ 0)
\(x^2+8x\ne0< =>\left[{}\begin{matrix}x\ne0\\x\ne-8\end{matrix}\right.\)
vậy ...
3. để phân thức = 0 => tử bằng không và mẫu khác không
\(\left\{{}\begin{matrix}x-2=0\\x^2+8x\ne0\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\left(tm\right)\\\left[{}\begin{matrix}x\ne0\\x\ne-8\end{matrix}\right.\end{matrix}\right.\)
Để phân thức xác định \(\Leftrightarrow x^2-5x+4\ne0\)
<=> x2 - x - 4x + 4 \(\ne\)0
<=> x( x - 1) - 4( x - 1) \(\ne\)0
<=> ( x- 4)( x - 1)\(\ne\)0
=>\(x\ne4,x\ne1\)
Điều kiện để phân thức xác định là ( x + 1 )( x - 2 ) ≠ 0 ⇒ x ≠ - 1; x ≠ 2.
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .
ĐKXĐ là:
16x2-25=0
<=>(4x)2-52=0
<=> (4x-5)(4x+5)=0
=>4x-5=0 và 4x+5=0
=>4x=5 và 4x = -5
=>x= 0,8 và x= -0,8
cảm ơn bạn nhé...