K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

7 tháng 12 2016

Ta có : 2n luôn chẵn với mọi n => 2n + 1 lẻ với mọi n

n( n + 1 ) là 2 số nguyên liên tiếp => n ( n + 1 ) chia hết cho 2 đồng nghĩa với n ( n + 1 ) chẵn

Vì 2n + 1 lẻ 

    n ( n + 1 ) chẵn

=> 2n + 1 và n ( n + 1 ) là nguyên tố cùng nhau

7 tháng 12 2016

Gọi d là ƯSC[2n+1; n(n+1)]

2n+1 là số lẻ => d là số lẻ (vì 1 số lẻ không chia hết cho 1 số chẵn)

n và (n+1) là 2 số tự nhiên liên tiếp nên n(n+1) phải là 1 số chẵn => d phải chẵn hoặc d = 1 (vì 1 số chẵn không chia hết cho 1 số lẻ trừ 1)

=> d =1 => 2n+1 và n(n+1) là 2 số nguyên tố cùng nhau

17 tháng 4 2017

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

25 tháng 12 2021

Thank you

 

2 tháng 6 2017

31 tháng 10 2024

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

22 tháng 12 2021

Gọi (2n+1, n+1) = d (d thuộc N*)

⇒⎧⎨⎩2n+1⋮dn+1⋮d⇒⎧⎨⎩2n+1⋮d2n+2⋮d⇒{2n+1⋮dn+1⋮d⇒{2n+1⋮d2n+2⋮d

⇒(2n+2)−(2n+1)⋮d⇒(2n+2)−(2n+1)⋮d

⇒2n+2−2n−1⋮d⇒2n+2−2n−1⋮d

⇒1⋮d⇒1⋮d

Mà d thuộc N*

nên d = 1

=> (2n+1, n+1) = 1

=> 2n + 1 và n + 1 là 2 số nguyên tố cùng nhau  (đpcm)

16 tháng 11 2020

e có 2 chia hết cho d; 2n+3 lẻ nên (2n+3,4n+8)=1

còn n+1-n=1 nên (n,n+1)=1