Cho a,b là hai số thực sao cho a^3 + b^3 + ( a+b)^3 + 6ab = 16. Tính a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Náy mình bị lỗi bạn bỏ cái này đi nhé. CHỉ giữ 1 cái thôi máy mình nó ra tần 4 cái
`a^3+b^3-6ab=-11<=>(a+b)^3-3ab(a+b)-6ab=-11<=>(a+b)^3-3ab(a+b+2)=-11`
Đặt `{(S=a+b),(P=ab):}`
Khi đó ta có `S^3-3P(S+2)=-11<=>(4(S^3+11))/(3(S+2))=4P`
Lại có `S^2>=4P` nên `S^2>=(4(S^3+11))/(3(S+2))`
`<=>(S^3-6S^2+44)/(3(S+2))<=0(S\ne-2)`
- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`
- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`
- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`
- TH1: `{(S^3-6S^2+44<=0),(3(S+2)>0):}<=>{(S<=-2,30213805),(S> -2):}<=>-2<S<-2,30213805(` Vô lý `)`
- TH2: `{(S^3-6S^2+44>=0),(3(S+2)<0):}<=>{(S>=-2,30213805),(S< -2):}<=>-2,30213805<S<-2`
mà `-7/3=-2,33333...<-2,30213805` nên `-7/3<S<-2(đfcm)`
\(P=2a^3+2b^3+6ab-2024\)
\(=2\left[\left(a+b\right)^3-3ab\left(a+b\right)\right]+6ab-2024\)
\(=2\left[1-3ab\left(a+b\right)\right]+6ab-2024\)
\(=2-6ab+6ab-2024\)
=-2022
cái khúc dấu bằng thứ 2 và thứ 3, sao biến đổi mấy số trong ngoặc thành -6ab ạ
Ta có
a^3+b^3+3ab(a^2+b^2)+6ab(a+b)=a^3+b^3+3ab.a^2+3ab.b^2+6ab=a^3+b^3+3(a^2)b+3(b^2)a+3a(b-1)b^2+3b(a-1)a^2+6ab
=(a+b)^3+3ab((b-1).b+(a-1).a)+6ab=(a+b)^3+3ab((1-b).(-b)+(1-a)(-a))+6ab=(a+b)^3+3ab(-2ab)+6ab
=(a+b)^3+(-6ab)ab+6ab
=>(a+b)^3+6ab(-ab-1)=6ab(-ab-1)+1 Vậy M=6ab(-ab-1)+1
k cho mình nhá
Bài 2:
a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)
\(=7^3+2\cdot7^2=441\)
Ta co:
\(0\le a,b,c\le3\Rightarrow\hept{\begin{cases}a^2\le3a\\b^2\le3b\\c^2\le3c\end{cases}}\Rightarrow\hept{\begin{cases}a^3\le9a\\b^3\le9b\\c^3\le9c\end{cases}}\)
\(\Rightarrow M=\Sigma_{cyc}\frac{a}{a^3+16}\ge\Sigma_{cyc}\frac{a}{9a+16}=\Sigma_{cyc}\frac{a^2}{9a^2+16a}\ge\frac{\left(a+b+c\right)^2}{9\left(a^2+b^2+c^2\right)+16\left(a+b+c\right)}\)
\(\Rightarrow M\ge\frac{\left(a+b+c\right)^2}{27\left(a+b+c\right)+16\left(a+b+c\right)}=\frac{3}{43}\)
Dau '=' xay ra khi \(\left(a;b;c\right)=\left(0;0;3\right)=\left(3;0;0\right)=\left(0;3;0\right)\)
Giả sử a+b >2 thì a3+b3+3ab(a+b)>8a3+b3+3ab(a+b)>8
⇔ab(a+b)>2⇔ab(a+b)>2
⇔ab(a+b)>a3+b3⇔ab(a+b)>a3+b3
⇔(a−b)2(a+b)<0⇔(a−b)2(a+b)<0
vô lý nên a+b≤2a+b≤2
a3+b3=(a+b)(.....)
dễ có (...) >0 => a+b>0
kia thì áp dụng bđt 4(a3+b3)>=(a+b)3 (dễ cm mà ,,,tách a^3+b^3 ra rồi cói và bđt phụ)