K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2021

Đặt A = \(\frac{2019.2020}{2019.2020+1}\)

=> A - 1 = \(\frac{2019.2020-\left(2019.2020+1\right)}{2019.2020+1}=\frac{-1}{2019.2020+1}\)

Đặt B = \(\frac{2020.2021}{2020.2021+1}\)

=> B - 1 = \(\frac{2020.2021-\left(2020.2021+1\right)}{2020.2021+1}=\frac{-1}{2020.2021+1}\)

Nhận thấy 2019.2020 + 1 < 2020.2021 + 1

=> \(\frac{1}{2019.2020+1}>\frac{1}{2020.2021+1}\)

=> \(\frac{-1}{2019.2020+1}< \frac{-1}{2020.2021+1}\)

=> A - 1 < B - 1

=> A < B 

Giải:

Ta có: 

2019.2020-1/2019.2020= 2019.2020/2019.2020 - 1/2019.2020

                                       =1-1/2019.2020

Tương tự:

2020.2021-1/2020.2021= 1-1/2020.2021

Vì 1/2019.2020 > 1/2020.2021 nên -1/2019.2020 < -1/2020.2021

(vì là số nguyên âm)

⇒ 1-1/2019.2020 < 1-1/2020.2021

⇔ 2019.2020-1/2019.2020 < 2020.2021-1/2020.2021

Chúc bạn học tốt!

Ta có: \(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{2019\cdot2020}+\dfrac{1}{2020\cdot2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2019}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2021}\)

\(=\dfrac{1}{1}-\dfrac{1}{2021}=\dfrac{2021}{2021}-\dfrac{1}{2021}\)

\(=\dfrac{2020}{2021}\)

mà \(\dfrac{2020}{2021}< \dfrac{2021}{2021}=1\)

nên A<1

31 tháng 1 2021

làm răng mà gõ đc kí hiệu toán học vậy bạn

 

trả lời:

Đương nhiên là A sẽ lớn hơn B vì các thừa số của A lớn hơn các thừa số của B.

Vậy A>B

học tốt nha bạn!

11 tháng 10 2019

vì 2020>2019>2009>2000nen a>b

chúc học tốt...................

16 tháng 7 2020

thôi mik làm đc rồi

B= 1/1.2+1/2.3+...+1/2019.2020

B=1/1-1/2+1/2-1/3+...+1/2019-1/2020

B=1-1/2020=2020/2020-1/2020=2019/2020

14 tháng 5 2019

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1.\) 

Với  :   \(a=2^{2018};.b=3^{2019};,c=5^{2020}.\) 

Và   :   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2019.2020}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\Leftrightarrow\) 

             \(B=1-\frac{1}{2020}< 1< A\)

22 tháng 7 2020

Bài 15 :

a) Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=1-\frac{1}{2020}=\frac{2019}{2020}< \frac{2020}{2020}=1\)

b) Ta có : \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\)

\(2A=\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1001}}\)

\(2A-A=\left(\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1001}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)

\(A=\frac{1}{2^{1001}}-\frac{1}{2}\)

Tới đây là so sánh đi nhé

22 tháng 7 2020

Cái này mình làm hôm qua rồi mà '-'

a) Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2019\cdot2020}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)

\(A=\frac{1}{1}-\frac{1}{2020}=\frac{2019}{2020}\)

\(\Rightarrow A< 1\)

b) \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\)

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+...+\frac{1}{2^{1000}}\right)\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{999}}\)

\(2A-A=A\)

\(=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{999}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{1000}}\right)\)

\(=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^{999}}-\frac{1}{2}-\frac{1}{2^2}-\frac{1}{2^3}-...-\frac{1}{2^{1000}}\)

\(=1-\frac{1}{2^{1000}}\)

\(\Rightarrow A=1-\frac{1}{2^{1000}}< 1\left(đpcm\right)\)

11 tháng 5 2023

S=1/2x3+1/4x5+1/6x7+...+1/2022x2023<1/2x3+1/3x4+1/4x5+...+1/1010x1011
=1/2-1/1011=1009/2022<1011/2023
=>S<1011/2023

 

25 tháng 4

S= 1/2.3 + 1/4.5 + 1/6.7 +.....+ 1 2020.2021 + 1 2022.2023 . : So sánh S và 1011/2023 

8 tháng 10 2020

\(A=\frac{1.2}{2.2}\cdot\frac{2.3}{3.3}\cdot\frac{3.4}{4.4}\cdot...\cdot\frac{2020.2021}{2021.2021}\)

\(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2020}{2021}\)

\(A=\frac{1.2.3.....2020}{2.3.4.....2021}\)

\(A=\frac{1}{2021}\)

8 tháng 10 2020

\(B=\frac{2020.2021-2020.2020}{2020.2019+2020.2}\)

\(B=\frac{2020.\left(2021-2020\right)}{2020.\left(2019+2\right)}\)

\(B=\frac{1}{2021}\)

Từ đó ta thấy 2 biểu thức bằng nhau