Một mảnh đất HCN có chiều dài 52cm chiều rộng 36cm. Người ta muốn chia thành những mảnh hình vuông bằng nhau có độ dài là số tự nhiên. Hỏi cách chia nào thì cạnh hình vuông lớn nhất ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là cạnh của hình vuông.
Do 52 chia hết cho a, 36 chia hết cho a => a là UC của 52 và 36
Vì a là lớn nhất => a = UCLN(52, 36) = 4
Vậy cạnh của hình vuông là 4(m)
để chia đám đất = nhau thì ta phải tìm ƯCLN (42;38)
42=2.3.7
38=2.19
=> ƯCLN (42;38)=2
vậy hình vuông lớn nhất có thể chia được là;
2.2=4
nhớ
Gọi: a là số cách chia mảnh đất thành các mảnh hình vuông bằng nhau
b (m) là độ dài cạnh của mảnh đất hình vuông được chia theo cách chia lớn nhất \(\left(a,b\inℕ^∗\right)\)
Theo yêu cầu bài ra thì khi đó:
+ a là số các ước chung của 48 và 42
+ b là ước chung lớn nhất của 48 và 42
Ta có: 42 = 2 . 21 = 2 . 3 . 7
48 = 16 . 3 = 24 . 3
Do đó: ƯCLN(42, 48) = 2 . 3 = 6 hay b = 6 m
Mà Ư(6) = {1; 2; 3; 6) Nên ƯC(42, 48) = {1; 2; 3; 6}
Do đó có 4 ước chung của 42 và 48 hay a = 4.
Vậy:
+ Số cách chia thành những mảnh hình vuông bằng nhau là 4 cách.
+ Với cách chia có độ dài cạnh là 6m thì cạnh của mảnh đất hình vuông là lớn nhất.
Giải:
Gọi: x là số cách chia mảnh đất thành các mảnh hình vuông bằng nhau
y là độ dài cạnh của mảnh đất hình vuông được chia theo cách chia lớn nhất
Khi đó: x là số ước chung của 48 và 42
y là ước chung lớn nhất của 48 và 42
Ta có: ƯC(42,48) = {1,2,3,6}
=> ƯCLN(42, 48) = 6
Vậy:
Chia thành những mảnh hình vuông bằng nhau nên độ dài cạnh mỗi mảnh là ước chung của \(48,42\).
Phân tích thành tích các thừa số nguyên tố: \(48=2^4.3,42=2.3.7\)
suy ra \(ƯCLN\left(48,42\right)=2.3=6\)
Suy ra độ dài cạnh là \(Ư\left(6\right)=\left\{1,2,3,6\right\}\).
Do đó có \(4\)cách chia.
Để diện tích mảnh đất hình vuông là lớn nhất thì độ dài cạnh là \(6m\)khi đó diện tích là \(6\times6=36\left(m^2\right)\).
Gọi x là cạnh hình vuông lớn nhất .
Để thoả mãn đề bài : 52 : x ; 36 : x ( x là số lớn nhất )
=> x là ƯCLN ( 52 ; 36 )
52 = 2^2 x 13
36 = 2^2 x 3^2
ƯCLN ( 52 ; 36 ) = 2^2 = 4
Vậy với cách chia với độ dài là 4 m là lớn nhât
Đáp án: Cạnh lớn nhất là 6m6m
Giải thích các bước giải:
Ta có: 48=24.348=24.3
42=2.3.742=2.3.7
→UC(48,42)={1,2,3,6}→UC(48,42)={1,2,3,6}
→→Có thể chia được bằng 44 cách với các cạnh hình vuông lần lượt là 1,2,3,6(m)1,2,3,6(m)
→→Với cách chia cạnh hình vuông lớn nhất là 6m
@Lâm
Diện tích mảnh đất:
42 . 30 = 1260 (\(m^2\))
⇒ UCLN(1260) = {1;2;3;5;6;7;9;10;...}
Số cách cũng là số ước của 1260,mà 1260 là:
\(1260=5\cdot2^2\cdot3^2\cdot7\)
Số ước của 1260 cũng là số cách chia:
(1+1)(2+1)(2+1)(1+1) = 36(cách chia)
Muốn mảnh đất có cạnh lớn nhất thì diện tích phải lớn nhất
"Từ đây tự lm típ nha"
Tick mk ha
Diện tích mảnh đất :
42 . 30 = 1260 ( m2 )
Các ước của 1260 :
1 ; 2 ; 3 ; 5 ; 6 ; 7 ; 9 ; 10 ; ....
Số cách cũng là số ước của 1260 , mà 1260 là :
1260 = 5 . 22 . 32 . 7
Số ước của 1260 cũng là số cách chia : ( 1 + 1 ) ( 2 + 1 ) ( 2 + 1 ) ( 1 + 1 ) = 36 ( cách chia )
muốn mảnh đất có cạnh lớn nhất thì diện tích phải lớn nhất .
.....
Gọi a là cạnh của hình vuông.
Do 52 chia hết cho a, 36 chia hết cho a => a là UC của 52 và 36
Vì a là lớn nhất => a = UCLN(52, 36) = 4
Vậy cạnh của hình vuông là 4(m)
tk mình nha
thank you bạn