Tìm giá trị nhỏ nhất của biểu thức x^2 + 4y^2 -10a (trên Violympic)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
\(E=2x^2+5y^2+x+4y+5\)
\(\Rightarrow E=2x^2+x+5y^2+4y+5\)
\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}-\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}-\dfrac{4}{25}\right)+5\)
\(\Rightarrow E=2\left(x^2+\dfrac{1}{2}x+\dfrac{1}{16}\right)+5\left(y^2+\dfrac{4}{5}y+\dfrac{4}{25}\right)+5-\dfrac{1}{8}-\dfrac{4}{5}\)
\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\)
mà \(\left\{{}\begin{matrix}2\left(x+\dfrac{1}{4}\right)^2\ge0,\forall x\\5\left(y+\dfrac{2}{5}\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow E=2\left(x+\dfrac{1}{4}\right)^2+5\left(y+\dfrac{2}{5}\right)^2+\dfrac{163}{40}\ge\dfrac{163}{40}\)
\(\Rightarrow GTNN\left(E\right)=\dfrac{163}{40}\left(tạix=-\dfrac{1}{4};y=-\dfrac{2}{5}\right)\)
=x2-2xy+y2+4y2+4y+1+2
=(x-y)2+(2y+1)2+2\(\ge2\)
dấu bằng xảy ra khi x=y=-1/2
\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2-\left(y+1\right)^2+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-y^2-2x-1+2y^2-4y+2028\)
\(=\left(x+y+1\right)^2-6x+y^2+2027\)
\(=\left(x+y+1\right)+\left(y-3\right)^2+2018\ge2018\forall x;y\) (do...)
=> MinA = 2018 \(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=3\end{matrix}\right.\)
`A=x^2+6x+y^2+4y+15`
`=(x^2+6x+9)+(y^2+4y+4)+2`
`=(x+3)^2+(y+2)^2+2`
Vì `(x+3)^2+(y+2)^2 >=0 forall x,y`
`=>A_(min)=2 <=> x=-3; y=-2`.
Ta có: \(A=x^2+6x+y^2+4y+15\)
\(=x^2+6x+9+y^2+4y+4+2\)
\(=\left(x+3\right)^2+\left(y+2\right)^2+2\ge2\forall x,y\)
Dấu '=' xảy ra khi (x,y)=(-3;-2)
x^2+y^2>=0
=>25*(x^2+y^2)>=0(1)
mà:(12-3x-4y)^2>=0(2)
cộng (1) cho (2)=>25(x^2+y^2) + (12-3x-4y)^2>=0
=>min=0 khi x=y=0
GTNN=-10a
Nhưng nó bắt ghi số mà